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Educational Readers.

lly and handsomely illustrated, excelling all others

d in Cheapness. The most beautiful Series of School

Readers. They have been published to meet a want

Tespect to size, gradation, and price. The books contain

Fs than those of the old popular series, and are much cheaper in price. They
have been compiled by several eminent educators who have acquired, by a life-long

experience in the work of elementary education, a familiarity with the wants of pupils

and teachers in this department of instruction.

The plan of the American Educational Readers will be found to embrace several new
features. That of the first reader combines the word method, the alphabetic method, and

the phonic method. The word and phonic methods are used to teach the elementary
sounds and their simplest combinations. Words are taught by associating them with the

factorial
representations of familiar objects, and their analysis leads to a systematic and

ogical presentation of letters and their sounds, as the components of the words. The
whole system is logical and systematic from the beginning to the end. The regular
combinations are carefully presented' at the commencement, and the pupil is made to

pass by slow degrees to what is anomalous and complex. Articulation andpronunci-
ation are secured before the pupil's mind is very much occupied with other considerations.
Here the phonic method has been kept steadily in view in the arrangement of the
exercises.

In the more advanced books of the series, while elocutionary principles have been

carefully elaborated, and illustrated by appropriate exercises, the important object of

instructing the pupil himself by means ot his own reading, has not been lost sight of.

Hence, the lessons will be found to embody much valuable information, upon scientific

and other subjects, entirely divested, however, of an abstruse or technically scientific

character. In these books, while it has not been deemed requisite to encumber the

pges with a mass of minute questions—such as any teacher of even ordinary tact and
intelligence could readily construct without aid—brief analyses have been appended to

many of the lessons, containing a summary of the matters contained therein. These
will "be found very useful in conducting exercises to develop the intelligence of the

pupils or training them in habits of attention and correct expression.
The Illustrations of these books will be found very far in advance of those of any

other series, in beauty and accuracy of drawing and engraving. They have been drawn

by the most eminent and talented artists, and engraved expressly
for these books.

No books in the market are more copiously and beautifully illustrated than the New
Graded Series.

The printing and paper are of a high order of excellence, the former being the best

style of the work of the well-known University Press at Cambridge.

%£f~ Full descriptive Circulars of the series, with titles and prices, will be sent

ly mail on application.

%* THE EDUCATIONAL REPORTER—Full of interesting and

valuable Educational information, is published three times a year, bearing

date respectively January, May and September, and will be sentj:o

teachers and educationists, without charge, on application.

Ivison, Bldkeman, Taylor & Co.,

EDUCATIONAL PUBLISHEKS,

138 & 140 Grand St., New York. 133 & 135 State St., Chicago.
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Standard Works on Geology.

A TEXT-BOOK OF GEOLOGY.

DESIGNED FOR SCHOOLS AND ACADEMIES. By James D. Dana, M. A
,

LL. DM Silliman Professor of Geology and Natural History, Yale College. Illustrated

by 375 Wood Cuts, i vol. 12 mo., 350 pages. Price $2.00.

MANUAL OF GEOLOGY.

TREATING OF THE PRINCIPLES OF THE SCIENCE WITH SPECIAL
reference to American Geological History, for the use of Colleges, Academies and
Schools of Science, by James D. Dana, M. A., LL. D., Silliman Professor of

Geology and Natural History, Yale College. Illustrated by a Chart of the World, and
over 1,000 figures, mostly from American sources. Revised Edition. 1 vol. 8vo., 800

pages. Price $5.00.

FIRST PRINCIPLES OF GEOLOGY.

A NEW AND IMPROVED TEXT-BOOK ON GEOLOGY. Descriptive and

Industrial, for High Schools, Academies and Colleges. With 240 Illustra.ions. By
David A. Wells, A. M., Author of " The Science of Common Things," "Natural

Philosophy,"
"
Principles of Chemistry," &c. Cloth, 12010., 336 pages. Price $1.25.

ELEMENTARY GEOLOGY.

A NEW EDITION, RE-MODELED, ENLARGED, AND MOSTLY RE-
written, brought to the present state of the science. Well adapted to the use of

Schools, Academies and Colleges, and the general reader. By Edwapd Hitchcock,
LL.D., late Professor of Geology, Amherst College, and Charles H. Hitchcock,
A. M., Professor of Geology, Dartmouth College. Cloth. i2mo., 430 pages.
Price $1.60.

Either 0/ the above will he sent by mail on receipt 0/ tke price.

%*THE EDUCATIONAL REPORTER—Full of interesting and

valuable Educational information, is published three times a year, bearing

date respectively January, May and September, and will be sent to

teachers and educationists, without charge, on application.

Ivison, Blakeman, Taylor & Co.,

EDUCATIONAL PUBLISHERS,

138 & 140 Grand St., New Y"ork. i 33 & 135 State St., Chicago.
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Kerl's English Grammars.

This scries has attained great popularity as a thoroughly practical course for educational

purposes. It is in successful use la all parts of the country, being in exclusive use in the

public schools of Boston, Cambridge ; Newton, Mass.
; Washington, D. C, and many

other representative cities.

K3^~ In the /bllo-uing distinctive and importantfeatures, KERUS System of English
Grammar claims superiority over other systems ;

i. It teaches more that is of practical utility.

2. It contains a simpler, sounder, and more comprehensive article on the Analysis of

Sentences.

3. It contains the true theory of Moods and Tanses, and shows better the nature

of Participles and Infinitives.

4. It contains a much better article on Capital Letters.

5. It contains a much better article on Punctuation.

6. It contains a much better article on Versification,—probably the only set of principles
that teach the true mechanism of English verse.

7. It contains a better article on Rhetorical Figures, and on the other devices which

give beauty and vigor to style.

8. It exhibits a wider circuit of the various constructions of the English language, and

presents more of the historical elements than is found in ordinary school grammars; and
also more of the laws which underlie language and make it what it is.

9. It surpasses* in the number, pithiness, variety, and interesting character of its

exercises.

10. It is drawn more directly from English and American literature, and is not com-

piled, to so gre?t an extent, from other grammars. It is more like a map made from

the country itself thau from other maps.
11. Its principles are better illustrated by examples, and doubtful points are better

decided and fortified by quotations from writers of good authority.
12. The matter, in all the books, is better classified and arranged,—a very important

item : for a well- classified book is more easily learned, more easily remembered, and much
more convenient for reference.

Principles are made plain by examples that show what is meant ; abstruse points are

brought within easy reach, by familiar and striking explanations ;
and all things are

made practical by exercises. The typography is also superior.

%W Full descriptive Circulars 0/ the series, giving titles and prices, will be sent

by mail on application.

1 niL riiyutAi ikjl\s\lj js.rj,rwjt\. 1 ins.—Full of interesting and

valuable Educational information, is published three times a year, bearing

date respectively January, May and September, and will be sent to

teachers and educationists, without charge, on application.

Ivison, Blakeman, Taylor & Co.,

educational plblishers,

138 & 140 Grand St., New Vork. 133 & 135 State St., Chicago.
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PEEFAOE,

In the preparation of this work, the author's previous

treatise, Elements of Geometry, has formed the ground-

work of construction. But in adapting the work to the

present advanced state of Mathematical education in our

best Institutions, it was found necessary so to alter the

plan, and the arrangement of subjects, as to make this

essentially a new work. The demonstrations of proposi-

tions have undergone radical changes, many new proposi-

tions have been introduced, and the number of Practical

Problems greatly increased, so that the work is now believed

to be as full and complete as could be desired in an elemen-

tary treatise.

In view of the fact that the Seventh Book is so much

larger than the others, it may be asked why it is not divided

into two. We answer, that classifications and divisions

are based upon differences, and that the differences seized

upon for this purpose must be determined by the nature of

the properties and relations we wish to investigate. There

is such a close resemblance between the geometrical prop-

erties of the polyedrons and the round bodies, and the

demonstrations relating to the former require such slight

modifications to become applicable to the latter, that there

seems no sufficient reason for separating into two Books

that part of Geometry which treats of them.

M5498G7



iT PREFACE.

Practical rules with applications will be found throughout

the work, and in addition to these, there is a full collection

of carefully selected Practical Problems. These are given

to exercise the powers and test the proficiency of the pupil,

and when he has mastered the most or all of them, it is

not likely that he will rest satisfied with present acquisi-

tion, but, conscious of augmented strength and certain of

reward, he will enter new fields of investigation.

The author has been aided, in the preparation of the

present work, by I. F. Quinby, A.M., of the University of

Eochester, N. Y., late Professor of Mathematics in the

United States Military Academy at West Point. The

thorough scholarship and long and successful experience

of this gentleman in the class-room, eminently qualify him

for such a task; and to him the public are indebted for*

much that is valuable, both in the matter and arrangement

of this treatise.

October, 1860.
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GEOMETRY.

DEFINITIONS.

1. Geometry is the science which treats of position, and

of the forms, measurements, mutual relations, and pro-

perties of limited portions of space.

Space extends without limit in all directions, and contains all

bodies.

2. A Point is mere position, and has no magnitude.
3. Extension is a term employed to denote that pro-

perty of bodies by virtue of which they occupy definite

portions of space. The dimensions of extension are

length, breadth, and thickness.

4. A Line is that which has extension in length only.

The extremities of a line are points.

5. A Right or Straight Line is one all of whose parts

lie in the same direction.

6. A Curved Line is one whose consecutive parts, how-

ever small, do not lie in the same direction.

7. A Broken or Crooked Line is

composed of several straight lines,

joined one to another successively,

and extending in different directions.

When the word line is used, a straight line is to be understood,
unless otherwise expressed.

8. A Surface or Superficies is that which has extension

in length and breadth only.

9. A Plane Surface, or a Plane, is a surface such that

(9)



10 GEOMETRY.

if any two of its points be joined by a straight line, every'

point of this line will lie in the surface.

10. A Curved Surface is one which is neither a plane,

nor composed of plane surfaces.

11. A Plane Angle, or simply an Angle,

is the difference in the direction of two

lines proceeding from the same point.

The other angles treated of in geometry will be named and defined

in their proper connections.

12. A Volume, Solid, or Body, is that which has exten-

sion in length, breadth, and thickness.

These terms are used in a sense purely abstract, to denote mere

space
— whether occupied by matter or not, being a question with

which geometry is not concerned.

Lines, Surfaces, Angles, and Volumes constitute the

different kinds of quantity called geometrical magnitudes.

13. Parallel Lines are lines which have

the same direction.

Hence parallel lines can never meet, however far they may be

produced ;
for two lines taking the same direction cannot approach

or recede from each other.

Two parallel lines cannot be drawn from the same point; for it

parallel, they must coincide and form one line.

PLANE ANGLES.

To make an angle apparent, the two

lines must meet in a point, as AB and

A 0, which meet in the point A ,

Angles are measured by degrees.

14. A Degree is one of the three hundred and sixty

equal parts of the space about a point in a plane.

If, in the above figure, we suppose A C to coincide with AB,
there will be but one line, and no angle ;

but if AB retain its posi

tion, and A G begin to revolve about the point A, an angle will be

formed, and its magnitude will be expressed by that number of the
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860 equal spaces about the point A, which is contained between

AB and A G.

Angles are distinguished in respect to magnitude by
the terms Right, Acute, and Obtuse Angles. J

15. A Right Angle is that formed by one

line meeting another, so as to make equal

angles with that other.

The lines forming a right angle are perpendicular
to *ach other.

16. An Acute Angle is less than a right

angle.

17. An Obtuse Angle is greater than

a right angle.

Obtuse and acute angles are also called

oblique angles; and lines which are neither parallel nor perpen-

dicular to each other are called oblique lines.

18. The Vertex or Apex of an angle is the point in which

the including lines meet.

19. An angle is commonly designated by a letter at its

vertex; but when two or more angles have their vertices

at the same point, they cannot be

thus distinguished.

For example, when the three lines

ABy
A C, and AD meet in the common

point Aj we designate either of the an-

gles formed, by three letters, placing

that at the vertex between those at the

opposite extremities of the including

lines. Thus, we say, the angle BAG,
etc. B

20. Complements.— Two angles are said to be comple
ments of each other, when their sum is equal to one right

angle.

21. Supplements.— Two angles are said to be supple-
ments of each other, when their sum is equal to two n^ht

angles.

r



12 GEOMETRY.

PLANE FIGURES.

22. A Plane Figure, in geometry, is a portion of a

plane bounded by straight or curved lines, or by both

combined.

23. A Polygon is a plane figure bounded by straight

Hues, called the sides of the polygon.
The least number of sides that can bound a polygon is

three, and by the figure thus bounded all other polygons
are analyzed.

FIGURES OF THREE SIDES.

24. A Triangle is a polygon having three sides and

three angles.

Tri is a Latin prefix signifying three
;
hence a Triangle is lite <

/ally a figure containing three angled. Triangles are denominated

from the relations both of their sides and angles.

25. A Scalene Triangle is one in

which no two sides are equal.

26. An Isosceles Triangle is one in

which two of the sides are equal.

27. An Equilateral Triangle is one in

arhich the three sides are equal.

28. A Right -Angled Triangle is one

which has one of the angles a right

angle.

29. An Obtrse-Angled Triangle is one

1 aving an obtuse angle.
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30. An Acute-Angled Triangle is one

in which each angle is acute.

31. An Equiangular Triangle is one

having its three angles jqual.

Equiangular triangles are dso equilateral, and vice versa.

FIGURES OF FOUR SIDES.

32. A Quadrilateral is a polygon having four sides and

four angles.

33. A Parallelogram is a quadrilateral 7

which has its opposite sides parallel. / /

Parallelograms are denominated from the rela- _•

tions both of their sides and angles.

34. A Rectangle is a parallelogram hav-

ing its angles right angles.

35. A Square is an equilateral rectangle.

36. A Rhomboid is an oblique-angled parallelogram.

37. A Rhombus is an equilateral rhom-

boid.

38. A Trapezium is a quadrilateral having
10 two sides parallel.

39. A Trapezoid is a quadrilateral in f
hich two opposite s*

J

i le other two oblique.

v/hich two opposite sides are parallel, and /

40. Polygous bounded by a greater number of sides

2



14 GEOMETRY.

than four are denominated only by the number of sides.

A polygon of five sides is called a Pentagon
• of six, a

Hexagon ; of seven, a Heptagon / of eight, an Octagon ;

of nine, a JVonagon, etc.

4L Diagonals of a polygon are lines

joining the vertices of angles not ad-

jacent.

42. The Perimeter of a polygon is its boundary consid

ered as a whole.

43. The Base of a polygon is the side upon which the

polygon is supposed to stand.

44. The Altitude of a polygon is the perpendicular
distance between the base and a side or angle opposite

the base.

45. Equal Magnitudes are those which are not only

equal in all their parts, but which also, when applied the

one to the other, will coincide throughout their whole

extent.

46. Equivalent Magnitudes are those which, though they
do not admit of coincidence when applied the one to the

other, still have common measures, and are therefore

numerically equal.

47. Similar Figures have equal angles, and the same

number of sides.

Polygons may be similar without being equal ;
that is, the angles

and the number of sides may be equal, and the length of the sides

and the size of the figures unequal.

X THE CIRCLE.

48. A Circle is a plane figure bound-

ed by one uniformly curved line, all of

the points in which are at the same

distance from a certain point within,

called the Center,

49. The Circumference of a circle is

the curved line that bounds it.

\



DEFINITIONS. 15

50. The Diameter of a circle is a line passing througn
its center, and terminating at both ends in the circum-

ference.

51. The Radius of a circle is a line extending from

its center to any point in the circumference. It is one

half of the diameter. All the diameters of a circle are

equal, as are also all the radii.

52. An Arc of a circle is any portion of the circum-

ference.

53. An angle having its vertex at the center of a

circle is measured by the arc intercepted by its sides.

Thus, the arc AB measures the angle AOB ;
and in gen-

eral, to compare different angles, we have but to compare
the arcs, included by their sides, of the equal circles

having their centers at the vertices of the angles.

UNITS OF MEASURE.

54. The Numerical Expression of a Magnitude is a number

expressing how many times it contains a magnitude of the

Bame kind, and of known value, assumed as a unit.

For lines, the measuring unit is any straight line of fixed

value, as an inch, a foot, a rod, etc.
;
and for surfaces, the

measuring unit is a square whose side may be any linear

unit, as an inch, a foot, a mile, etc. The linear unit

being arbitrary, the surface unit is equally so ; and its

selection is determined by considerations of convenience

and propriety.

For example, the parallelogram ABBC is mea- c D
sured by the number of linear units in CD, mul-

tiplied by the number of linear units in AC ox

BD; the product is the square units in ABDC.
For, conceive CD to be composed of any number A B

of equal parts
—

say five—and each part some unit of linear measure,
and AC composed of three such units; from each point of divi-

sion on CD draw lines parallel to A C, and from each point of divi-

sion on A C draw lines parallel to CD or AB
;
then it is as obvious
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as an axiom that the parallelogram will contain 5 X 3 = 15 square

units. Hence, to find the areas of right-angled parallelograms, mul-

tiply the base by the altitude.

EXPLANATION OF TERMS.

55. An Axiom is a self-evident truth, not only too sim-

ple to require, but too simple to admit of, demonstration.

56. A Proposition is something which is either pro-

posed to be done, or to be demonstrated, and is either a

problem or a theorem.

57. A Problem is something proposed to be done.

58. A Theorem is something proposed to be demon-

strated.

59. A Hypothesis is a supposition made with a view to

draw from it some consequence which establishes the

truth or falsehood of a proposition, or solves a problem.

60. A Lemma is something which is premised, or demon-

strated, in order to render what follows more easy.

61. A Corollary is a consequent truth derived imme-

diately from some preceding truth or demonstration.

62. A Scholium is a remark or observation made upon

something going before it.

63. A Postulate is a problem, the solution of which is

self-evident.

POSTULATES.

Let it be granted
—

I. That a straight line can be drawn from any one poirt

to any other point ;

IL. That a straight line can be produced to any distance,

or terminated at any point ;

III. That the circumference of a circle can be de-

Bcrjbed about any center, at any distance from that center.
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AXIOMS.

1. Things which are equal to the same thing are equal U
each other.

2. Wlien equals are added to equals the wholes are equal,

3. When equals are taken from equals the remainders are

equal.

4. When equals are added to unequals the wholes are

unequal.

5. Wlien equals are taken from unequals the remainders

are unequal.
6. Things which are double of the same thing, or equal

things, are equal to each other.

7. Things which are halves of the same thing, or of equal

things, are equal to each other.

8. The whole is greater than any of its parts.

9. Every whole is equal to all its parts taken together.

10. Things which coincide, or fill the same space, are

identical, or mutually equal in all their parts.

11. All right angles are equal to one another.

12. A straight line is the shortest distance between two

points.

18. Two straight lines cannot inclose a space.

ABBREVIATIONS.

The common algebraic signs are used in this work,
and demonstrations are sometimes made through the

medium of equations ;
and it is so necessary that the

student in geometry should understand some of the more

simple operations of algebra, that we assume that he is

acquainted with the use of the signs. As the terms

circle, angle, triangle, hypothesis, axiom, theorem, cor-

ollary, and definition, are constantly occurring in a course

of geometiy, we shall abbreviate them as shown in the

following list :
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By Th. 1, any two supplementary angles, as ABD^
ABO, are together equal to two right angles. And since

the angular space about the point B is neither increased

nor diminished by the number of lines drawn from that

point, the sum of all the angles DBA, ABU, JEBH,
HBQ, fills the same spaces as any two angles HBD,
HBO. Hence the theorem

; from any point in a line, the

sum of all the angles that can be formed on the same side of

the line is equal to two right angles.

Cor. 1. And, as the sum of all the angles that can be

formed on the other side of the line, OB, is also equal to

two right angles; therefore, all the angles that can be

formed quite round a point, B, by any number of lines, are

together equal to four right angles.

Oor. 2. Hence, also, the whole circum-

ference of a circle, being the sum of the

measures of all the angles that can be

made about the center F, (Def. 53), is the

measure of four right angles; conse-

quently, a semicircumference. is the mea-

sure of two right angles ;
and a quadrant, or 90°, is the

measure of one right angle.

THEOREM III. X
If one straight line meets two other straight lines at a

common point, forming two angles, which together are equal
tc two right angles the 'two straight lines are one and the.

tame line.

Let the line AB meet the

lines BD and BE at the com-
mon point B, making the sum
of tne two angles ABB, ABB,
equal to two right angles; We j£
are to prove that DB and BE*
are one straight line

j^'
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If I)B and BE are not in the same line, produce DB
to 0, thus forming one line, BBC
Now by Th. 1, ABB + ABO must be equal to two

right angles. But by hypothesis, ABB 4- ABE is equal

to two right angles.
*

Therefore, ABB + ABO is equal to ABB -f ABE,
(Ax. 1). From each of these equals take away the com-

mon angle ABB, and the angle ABO will be equal to

ABE, (Ax. 3). That is, the line BE must coincide with

BO, and they will be in fact one and the same line, and

they cannot be separated as is represented in the figure.

Hence the theorem ; if one line meets two other lines at a

common point, forming two angles which together are equal

to two right angles, the two lines are one and the same line.

THEOKEM IV.

If two straight lines intersect each other, the opposite or

vertical angles must be equal.

If AB and OB intersect each

other at E, we are to demonstrate

that the angle AEO is equal to

the vertical angle BEB ;
and the

angle AEB, to the vertical angle
OEB.
As AB is one line met by BE, another line, the two

angles AEB and BEB, on the same side of AB, are equal
to two right angles, (Th. 1). Also, because OB is a right

line, and AE meets it, the two angles AEO and AEB
are together equal to two right angles.

Therefore, AEB + BEB = AEO + AEB. (Ax. 1.)

If from these equals we take away the common angle

AEB, the remaining angle BEB must be equal to the

remaining angle AEO, (Ax. 3). In like manner, we can

prove that AEB is equal to OEB. Hence the theo**en. ;

if the two lines intersect each other, the vertic %l angle* mu it

be equal.
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By Th. 1, any two supplementary angles, as ABD^
ABC, are together equal to two right angles. And since

the angular space about the point B is neither increased

nor diminished by the number of lines drawn from that

point, the sum of all the angles DBA, ABU, EBH,
HBO, fills the same spaces as any two angles HBD,
HBQ. Hence the theorem

; from any point in a line, the

sum of all the angles that can be formed on the same side of

the line is equal to two right angles.

Cor. 1. And, as the sum of all the angles that can be

formed on the other side of the line, CD, is also equal to

two right angles; therefore, all the angles that can be

formed quite round a point, B, by any number of lines, are

together equal to four right angles.

Cor. 2. Hence, also, the whole circum-

ference of a circle, being the sum of the

measures of all the angles that can be

made about the center F, (Def. 53), is the

measure of four right angles; conse-

quently, a semicircumference, is the mea-

sure of two right angles ; and a quadrant, or 90°, is the

measure of one right angle.

THEOREM III. t
If one straight line meets two other straight lines at a

common point, forming two angles, which together are equal
tc two right angles the 'two straight lines are one and the

tame line.

Let the line AB meet the

lines BD and BE at the com- A
mon point B, making the sum
of tne two angles ABB, ABE,
equal to two right angles ; We
are to prove that DB and BlM
are one straight line.
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If 1)B and BE are not in the same line, produce BB
to 0, thus forming one line, BBC.
Now by Th. 1, ABB -f ABO must be equal to two

right angles. But by hypothesis, ABB + ABB is equal

to two right angles.
*

Therefore, ABB + ABO is equal to ABB + ABB,
(Ax. 1). From each of these equals take away the com-

mon angle ABB, and the angle ABO will be equal to

ABB, (Ax. 3). That is, the line BE must coincide with

BO, and they will be in fact one and the same line, and

they cannot be separated as is represented in the figure.

Hence the theorem ; if one line meets two other lines at a

common point, forming two angles which together are equal

to two right angles, the two lines are one and the same line.

THEOREM IV.

If two straight lines intersect each other, the opposite or

vertical angles must be equal.

If AB and OB intersect each

other at E, we are to demonstrate

that the angle AEO is equal to

the vertical angle BEB ;
and the

angle AEB, to the vertical angle
OEB.
As AB is one line met by BE, another line, the two

angles AEB and BEB, on the same side of AB, are equal
to two right angles, (Th. 1). Also, because OB is a right

line, and AE meets it, the two angles AEO and AEB
are together equal to two right angles.

Therefore, AEB + BEB = AEO + AEB. (Ax. 1.)

If from these equals we take away the common angle

AEB, the remaining angle BEB must be equal to the

remaining angle AEO, (Ax. 3). In like manner, we can

prove that AEB is equal to OEB. Hence the thecen. ;

if the two lines intersect each other, the vertic il angle* km it

be equal.
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Second Demonstration.

By Def. 11, the angle DEB is the difference in the

direction of the lines ED and EB
;
and the angle AEQ

is the difference in the direction of the lines EC and EA.
But ED is opposite in direction to EC; and EB is

opposite in direction to EA.

Hence, the difference in the direction of ED and EB
is the same as that of EC and EA> as is obvious by in-

spection.

Therefore, the angleDEB is equal to its opposite AEC
In like manner, we may prove AED = CEB.
Hence the theorem ; if two lines intersect each other, ths

vertical angles must be equal.

THEOREM V.

If a straight line intersects two parallel lines, the sum of

the two interior angles on the same side of the intersecting

line is equal to two right angles.

[Note.
—By interior angles, we mean angles which lie between the

parallels ;
the exterior angles are those not between the parallels.]

Let the line EF intersect the

parallels AB and CD
\

then

we are to demonstrate that

the angles BGE + GHD =
2K.L
Because GB and ED are C /H d

parallel, they are equally in-
<£

clined to the line EF, or have

the same difference of direction from that line. There-

fore, |_FGB =
[__ GHD. To each of these equals add

the \_BGH, and we have FGB +BGH=GITD+BGB:.
But by Th. 1, the first member of this equation is equal

to two right angles ; and the second member is the sum
of the two angles between the parallels. Hence the theo-

rem ; if a line intersects two parallel lines, the sum of the two

interior angles on the same side of the intersecting line must

be equal to two right angle*.
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Sctt&Ln* — As AB and CD are parallel lines, and EF is a line

intersecting them, AB and EF must make angles equal to those made

by CD and EF. That is, the angles about the point G must be equal
to the corresponding angles about the point H.

THEOREM VI.

If a line intersects two parallel lines, the alternate interior

angles are equal.

Let AB and CD be paral-

lels, intersected by EF at E
and G. Then we are to prove
that the angle AGE is equal
to the alternate angle GED,
and QEG = EGB. c ~7W

"
D

By Th. 5, [_BGE + \__ /
GED = two right angles. Al-

so, by Th. 1, \_AGE + [_BGE = two right angles.

From these equals take away the common angle BGE,
and L GHD will be left, equal to \_AGE, (Ax. 3). In

like manner, we can prove that the angle QEG is equal
to the angle EGB. Hence the theorem ; if a line intersects

two parallel lines, the alternate interior angles are equal.

Cor. 1. Since [__AGE= [__FGB,
and \_AGE=[__GED;
Therefore, LFGB - |_ &HD (Ax. 1).

Also, LA&F + LAGH = 2 R - L> (Th. 1),

and L OEG + [_AGE = 2 K. L, (Th. 5);

Therefore

\_AGF + l_AGE= [_CEG + L_AGE,(Ax.l);
and LAGF = L OEG, (Ax. 3).

That is, the exterior angle is equal to the interior opposiU

angle on the same side of the intersecting line.

Cor. 2. Since \_AGE = [_FGB,
and l_AGE=\_CEE;
Therefore, [__FGB = |_ OEE.
In the same manner it may be shown that

[__AGF = \_EED.
Hence, the alternate exterior angles are equal.

v *
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THEOREM VII.

If a line intersects two other lines, making the sum of the

two interior angles on the same side of the intersecting line

equal to two right angles, the two straight lines are parallel.

Let the line EF intersect

the lines AB and OB, making
the two angles BQR +GHB A= to two right angles ;

then

we are to demonstrate that

AB and OB are parallel. C /H
"~
d

As EF is a right line and E
'

BGr meets it, the two angles
FCrB and BGH are together equal to two right angles,

(Th. 1). But by hypothesis, the angles, BGHnnd GHB,
are together equal to two right angles. From these two

equals take away the common angle BGrH, and the re-

maining angles FGB and GHD must be equal, (Ax. 3).

Now, because GB and HD make equal angles with the

same line EF, they must extend in the same direction
;
and

lines having the same direction are parallel, (Def. 13).

Hence the theorem
; if a line intersects two other lines, making

the sum of the two interior angles on the same side of the in-

tersecting line equal to two right angles, the two lines must b«

'parallel.

Cor. 1. If a line intersects two other lines, making the

alternate interior angles equal, the two lines intersected

must be parallel.

Suppose the \_ AGH =
|__ &HI) - Adding L H&B

to each, we have

[_AGH + [_HGB = L_ GHB + [__HGB.
but the first member of this equation, that is, [_AGfH-+

|__ HGB, is equal to two right angles ;
hence the second

member is also equal to the same
;
and by the theorem,

the lines AB and OB are parallel.

Cor. 2. If a line intersects two other lines, making the
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opposite exterior and interior angles equal, the two lines

intersected must be parallel.

Suppose the [_FGB = [_ GRD. Adding the [__HGB
to each, we have

[_FGB + \_EGB = L &HD + ##£.
But the first member of this equation is equal to two

right angles ;
hence the second member is also equal to

two right angles ;
and by the theorem, the lines AB and

OB are parallel.

Oor. 3. If a line intersects two other lines, making tbo

alternate exterior angles equal, the lines must be parallel:

Suppose [_BGF=[_ORF, and [_AGF = [_DRF,
ByTh.4, [_BGF^[__AGR,2ind[_ORF = [_DRG
And since [_BGF= [_ORF, [__AGR=[_DRG .

That is, the alternate interior angles are equal; an* J

hence (by Cor. 1) the two lines are parallel.

THEOREM VIII.

If two angles have their sides parallel, the two angles will

be either equal or supplementary.

Let A be parallel to BD, and AH
parallel to BF or to BG. Then we are

to pror^ that the angle DBx is equal

to the angle OAR, and that the angle
DBG is supplementary to the angle A.

The angle OAR is formed by the differ-

ence in the direction ofA andAR; and

the angle DBF is formed by the differ-

ence in the direction of BB and BF.
But A and AR have the same direc-

tions as BB and BF, because they are respectively paral-

lel. Therefore, by Def. 11, L CAR= \__BBF. But the

line BG has the same, direction as BF, and the angle
DBG is supplementary to DBF. Hence the theorem;

angles whose sides are parallel are either equal or supple*

inentary.
3

X \
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v, • THEOREM IX.

The opposite angles of any parallelogram we equal.

Let AEBG be a parallel-

ogram. Then we are to \

prove that the angle GBE 6 \]

is equal to its opposite angle
A.

ProduceEB to D, and GB
to F; then, since BD is par-

allel to AG, and BF to AE, the angle DBF is equal co

the angle A, (Th. 8).

But the angles GBE and DBF, being vertical, are

equal, (Th. 4). Therefore, the opposite angles GBE and

A, of the parallelogram AEBG, are equal.

In like manner, we can prove the angle E equal to

the angle G. Hence the theorem
;

the opposite angles of

any parallelogram are equal.

THEOREM X.

The sum of the angles of any parallelogram i» equal to

four right angles.

Let ABQD be a parallelo-

gram. We are to prove that

the sum of the angles A, B,
and D, is equal to four right

angles, or to 360°.

Because AD and BO are parallel lines, and AB inter-

sects them, the two interior angles A and B are together

equal to two right angles, (Th. 5). And because CD in-

tersects the same parallels, the two interior angles O and

D are also together equal to two right angles. By addi-

tion, we have the sum of the four interior angles of the

parallelogram ABCD, equal to four right angles. Hence
the theorem

; the sum of the angles of any parallelogram is

taual tc four right angles.

is.
x
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V
The sum of the three angles of any triangle is equal to two

right angles.

LetAB be a triangle,

and through its vertex

draw a line parallel to the

base AB, and produce
the sides AC and BO.
Then the angles A and

a, being exterior and in-

terior opposite angles on

the same side of the line AC, are equal to each other.

For the same reason, [_ E = L b. The angles C and c,

being vertical angles, are also equal, (Th. 4). Therefore,

the angles A, B, C are equal to the angles a, b, c respect-

ively. But the angles around the point C, on the upper
side of the parallel CD, are equal to two right angles,

(by Th. 2). Hence the theorem
;

the sum of the three

angles, etc.

Second Demonstration.

Let AEBG- be a parallelogram
Draw the diagonal GE ; thus di-

viding the parallelogram into two

triangles, and the opposite angles

G and E each into two angles.

Because GB and AE are parallel, the alternate interior

angles BGE and GEA are equal, (Th. 6). Designate
each of these by b.

In like manner, because EB and AG are parallel, the

alternate interior angles, BEG and EGA, are equal.

Designate each of these by a.

Now we are to prove that the three angles B, b, and a,

and also that the three angles A, a, and b, are equal to

two right angles.
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Because A and B are opposite angles of a parallelo-

gram, they are equal, (Th. 9), and [_A -f [_B = 2 [__A.

And all the interior angles of the parallelogram are

equal to four right angles, (Th. 10).

Therefore, 2A + 2a -f- 2b = 4 right angles.

Dividing by 2, and J. + a + & = 2 "

That is, all the angles of the triangle AGrE are together

equal to two right angles

Hence the theorem
;
the sum of the three angles, etc.

Scholium.—Any triangle, as AGE, may be conceived to be part of

a parallelogram. For, let AGE be drawn independently of the paral-

lelogram ;
then draw EB from the point E parallel to A G, and through

the point G draw GB parallel to AE, and a parallelogram will be

formed embracing the triangle ;
and thus the sum of the three angles

of any triangle is proved equal to two right angles.

This truth is so fundamental, important, and practical,

as to require special attention ; we therefore give a

Third Demonstration.

Let ABQ be a triangle. Then
we are to show that the angles A,

Q, and ABQ, are together equal
*o two right angles.
Let AB be produced to D, and

from B draw BE parallel to A 0.

Then, EBB and CAB being exterior and interior op-

posite angles on the same side of the line AB, are equal,

(Th. 6, Cor.1). Also, QBE and AQB, being alternate

angles, are equal, (Th. 6).

By addition, observing that [__ QBE, added to \__EBB,
must make |__ QBD, we have

l_CBB = l_A + \_Q. (1.)

To each of these equals add the angle QBA, and we
shall have

L QBA + L OBB =L^ + L_tf+L OBA.
But (by Th. 1), the sum of the first two is equal to two
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rigltt angles; therefore, the three angles, A, C, and CBA
f

are together equal to two right angles.
Hence the theorem

; the sum of the three angles, etc.

y THEOREM XII.

If any side of a triangle is produced, the exterior angle i*

equal to the sum of the two interior opposite angles.

Let ABO be a triangle. Pro-

duce AB to B; and we are to

prove that the angle CBB is equal
to the sum of the two angles A
and C.

We establish this theorem by a

course of reasoning in all respects the same as that hy
which we obtained Eq. (1.), third demonstration, (Th. 11).

Cor. 1. Since the exterior angle of any triangle is equal
to the sum of the two interior opposite angles, therefore

it is greater than either one of them.

Cor. 2. If two angles in one triangle be equal to two

angles in another triangle, the third angles will also be

equal, each to each, (Ax. 3); that is, the two triangles

will be mutually equiangular.

Cor. 3. If one angle in a triangle be equal to one angle
in another, the sum of the remaining angles in the one

will also be equal to the sum of the remaining angles in

the other, (Ax. 3).

Cor. 4. If one angle of a triangle be a right' angle, the

sum of the other two will be equal to a right angle,

and each of them singly will be acute, or less than a right -.

angle.

Cor. 5. The two smaller angles of every triangle are

acute, or each is less than a right angle.

Cor. 6. All the angles of a triangle may be acute, but

no triangl 3 can have more than one right or one obtuse

angle.
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V THEOREM XIII.

In any polygon, the sum of all the interior angles is equal

to twice as many riglit angles, less four, as the figure has

Let ABODE be any polygon ;

we are to prove that the sum of

all its interior angles, A+B+ O
+D+E, is equal to twice as

many right angles, less four, as

the figure has sides.

From any point, p, within the

figure, draw lines pA, pB, pG, etc., to all the angles,

thus dividing the polygon into as many triangles as it

has sides. Now, the sum of the three angles of each of

these triangles is equal to two right angles, (Th. 11) j
and

the sum of the angles of all the triangles must be equal

to twice as many right angles as the figure has sides. But

the sum of these angles contains the sum of four right

angles about the point p ; taking these away, and the

remainder is the sum of the interior angles of the figure.

Therefore, the sum must be equal to twice as many right

angles, less four, as the figure has sides.

Hence the theorem
;
in any polygon, etc.

From this Theorem is derived the rule for finding the

sum of the interior angles of any right-lined figure :

Subtract 2from the number of sides, and multiply the re-

mainder by 2 ;
the product will be the number of right angles.

Thus, if the number of sides be represented by S, the

number of right angles will be represented by (2#— 4).

The Theorem is not varied in case n

of a re-entrant angle, as repre- ^/"^
sented at d, in the figure ABCdEF. -^^^^ L
Draw lines from the angle d to \ "/( 7E

the several opposite angles, making \ / \ /
as many triangles as the figure has \/ \y
sides, less two, and the sum of the A F

three angles of each triangle equals two right angles.
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THEOREM XIV.

If the sides of one angle be respectively perpendicular
to the sides of a second angle, these two angles will be either

equal or supplementary.

Let BAD be the first angle, and

from any point within it, as C, draw /

CB and CD, at right angles, the 3
T^>C

first to AB
}
and the second to AD, I

\ ^""-Jl

and produce CD in the direction / j

CD, thus forming at C the supple- A B

entary angles BCE, BCD
;
then

will the angle BCD be equal to the angle A, and therefore

BCD, which is the supplement of BCD, will also be the

supplement of the angle A.

For since ABCD is a quadrilateral, the sum of the four

interior angles is four right angles (Prop. 13), and because

the angles ABC and ADC are each right angles, the sum
of the angles BAD, BCD is two right angles. But the

sum of the adjacent angles BCD, BCD is also two right

angles. Hence, if in these last two sums we omit the com-

mon angle BCD, we have remaining the angle BCD, equal
to the angle BAD, and consequently the angle BCD which

is the supplement of the first of these equal angles is also

the supplement of the other.

Hence the Theorem.

ScnoLiUM.—If the vertex of the second angle be without the first angle,

we would draw through any assumed point within the first angle parallels to

the sides of the second
;
the above demonstration will then apply to the first

angle, and the angle formed by the parallels.

THEOREM XT. ,X
From any point ivithout a straight line, but one perpen-

dicular can be drawn to that line.

From the point A let us suppose
it possible that two perpendiculars,

AB and A C, can be drawn. Now, be-

cause AB is a supposed perpendicu-

lar, the angle ABC is a right angle ;
—

and because AC is a supposed per-

B C
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pendicular, the angle ACB is also a right angle ;
and if

two angles of the triangle ABC are together equal to two

right angles, the third angle, BAG, must be infinitely

small, or zero
;
that is, the two perpendiculars being drawn

through the common point A, and including no angle,

must necessarily coincide, and form one and the same per-

pendicular.

Hence the theorem
; from any point without a straight

line, etc.

Cor. At a given point in a straight line but one per-

pendicular can be erected to that line ; for, if there could

be two perpendiculars, we should have unequal righ

angles, which is impossible.

THEOREM XVI.
Two triangles which have two sides and the included angle

in the one, equal to two sides and the included angle in the

other, each to each, are equal in all respects.

In the two A's, ABCand BEF,
on the supposition thatAB= BE,
AC=BF, and [_A = \__B, we
are to prove that BC must = EF,
the [__B = [__E, and the [_C=
LJJ

Conceive the A ABC cut out of the paper, taken up,

and placed on the A BEF in such a manner that the

point A shall fall on the point B, and the line AB on

the line BE; then the point B will fall on the point E,
because the lines are equal. Now, as the [__A = [__B,

the line ACmust take the same direction as BF, and fall

on BF; and as AC = BF, the point C will fall on F, B
being on E and C on F, BC must be exactly on EF,

(otherwise, two straight lines would enclose a space, Ax.

13), and BC= EF, and the two magnitudes exactly fill

the same space. Therefore, BC = EF, [_B = [__E,

_C~ [_F, and the two A's are equal, (Ax. 10).

Hence the theorem ; two triangles which have two sides, evo.
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THEOREM XVII.

When two triangles have a side and two adjacent angles in

the one, equal to a side and two adjacent angles in the other,

each to each, the two triangles are equal in all respects.

In two A's, as ABC and

T)EF, on the supposition
th&tBC= EF, \_B=\_E,
and [_C — [_F, we are to

prove that AB = BE, AC
= DF, andL^. = L^>-

Conceive the A ABC taken up and placed on the A
DBF, so that the side BC shall exactly coincide with its

equal side EF; now, because the angle B is equal to the

angle E, the line BA will take the direction of ED, and

will fall exactly upon
:
t ;

and because the angle C is equal
to the angle F, the line CA will take the direction of

FD, and fall exactly upon it ; and the two lines BA and

CA, exactly coinciding with the two lines EB and FD,
the point A will fall on B, and the two magnitudes will

exactly fill the same space ; therefore, by Ax. 10, they are

equal, and AB » DE, AC=DF, and the [_A = \__D.

Hence the theorem
;
when two triangles have a side and

two adjacent angles in the one, equal to, etc.

/\ THEOREM XVIII.

If two sides of a triangle are equal, the angles opposite to

these sides are also equal.

Let ABC be a triangle; and on

the supposition that AC = BC, we
are to prove that the l_A=the [_B.

Conceive the angle C divided into

two equal angles by the line CD;
then we have two A's, ADC and

BDC, which have the two sides, AC
and CD of the one, equal to the two

sides, CB and CD of the other
;
and

o
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the invaded angle AOB, of the one, equa. to the in-

cluded angle BOB of the other: therefore, (Th. 16), AB
= BB, and the angle A, opposite to OB of the one tri-

angle, is equal to the angle B, opposite to OB of the

other triangle ;
that is, |_A = |__ B.

Hence the theorem
; if two sides of a triangle are equal,

the angles, etc.

Cor, 1. Conversely : if two angles of a triangle are equal,

the sides opposite to them are equal, and the triangle is

isosceles.

For, if A is not equal to BO, suppose BO to be the

greater, and make BE— AE; then will A ABB be isos-

celes, and [_EAB = l_EBA ;
hence [_EAB = [_ CAB,

or a part is equal to the whole, which is absurd
; therefore,

OB cannot be greater than AO, that is, neither of the

sides AO, BO, can be greater than the other, and conse-

quently they are equal.

Cor. 2. As the two triangles, ACB and BOB, are in all

respects equal, the line which bisects the angle included

between the equal sides of an isosceles A also bisects the

base, and is perpendicular to the base.

Scholium 1.— If in the perpendicular DC, any other point than C
be taken, and lines be drawn to the extremities A and B, such lines

will be equal, as is evident from Th. 16
; hence, we may announce

this truth: Any point in a perpendicular drawn from the middle of a

line, is at equal distancesfrom the two extremities of the line.

ScnoLiuM 2.— Since two points determine the position of a line, it

follows, that a line which joins two points each equally distant from the

extremities of a given line, is perpendicular to this line at its middle

point,

< Kr^ THEOREM XIX.

The greater side of every trianjle has the greater angle

opposite to it.

Let ABC be a A ;
and on the supposition that A C is

greater than AB, we are to prove that the angle ABCi*
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greater than the [_ 0. From AC, the

greater of the two sides, take AB, equal ^
to the less side AB, and draw BB, thus /\

making two triangles of the original tri- / \

angle. As AB = AB, the [__ABB = / \
theL^^A (Th.18).

B
\r~\

But the |__ABB is the exterior angle ^\\
of the A BBC, and is therefore greater c

than C, (Th. 12, Cor. 1); that is, the

L ABD is greater than the [_ C. Much more, then, is

the angle ABC greater than the angle C.

Hence the theorem
; the greater side of every triangle, etc.

Cor, Conversely: the greater angle of any triangle has

the greater side opposite to it.

In the triangle ABC, let the angle B be greater than

the angle A ;
then is the side AC greater than the side

BC
For, if BC — A C, the angle A must be equal to the

angle B, (Th. 18), which is contrary to the hypothesis ;

and if BC^>AC, the angle A must be greater than the

angle B, by what is above proved, which is also contrary
to the hypothesis ;

hence BC can be neither equal to, nor

greater, than AC; it is therefore less than AC.

THEOREM XX.

The difference between any two sides of a triangle is less

than thi third side.

LetABChe a A, in which AC is greater
than AB ;

then we are to prove that AC
—AB is less than BC.
On AC, the greater of the two sides,

lay off AB equal to AB.

Now, as a straight line is the shortest

distance between two points, we have

AB + BOAC. (1)
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x

From these unequals suotract the equals AB = AB,
and we have BO>AO— AB. (Ax. 5).

Hence the theorem
;

the difference between any two Met

of a triangle, etc.
-^\

THEOREM XXI.

ff two triangles have the three sides of the one equal to

the three sides of the other, each to each, the two triangles are

equxl, and the equal angles are opposite the equal sides.

In two triangles, as ABO and ABB, on the supposition

that the side AB of the one = the side AB of the other,

AO=AB, and BO=BJ), we are to demonstrate that

[_AOB = \__ABB, L BAO=
l_BAB, and [_ABO= [_ABD.

Conceive the two triangles to

t>e joined together by their long-

est equal sides, and draw the

line OB.

Then, in the triangle AOD,
because AO is equal to AB,
the angle AOD is equal to the angle ABO, (Th. 18). In

like manner, in the triangle BOB, because BO is equal

to BB, the angle BOB is equal to the angle BBO. Now,
the angle AOB being equal to the angle ABO, and the

angle BOB to the angle BBO, [_AOB + [_BOB = L.

ABO + [_BBO, (Ax. 2) ;
that is, the whole angledOB ia

equal to the whole angle ABB.
Since the two sides A and OB are equal to the two sides

AB and BB, each to each, and their included angles A OB,

ABB, are also equal, the two triangles ABO, ABB, are

equal, (Th. 16), and have their other angles equal ;
that

is, [_BAO= \_BAB, and [_ABO= [__ABB.

Hence the theorem
; if two triangles have the three siie*

of the one, etc.
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THEOREM XXII.

If two triangles have two sides of the one equal to tw*

tides of the other, each to each, and the included angles ui>

equal, the third sides will be unequal, and the greater third

side will belong to the triangle which has the greater included

angle.

In the two A's, ABO and

ACB, let AB and AC of the

one A be equal to AB and A
of the other A, and the angle
BAC greater than the angle

BAG; we are to prove that

the side BO is greater than the

side OB.

Conceive the two a's joined together by their shorter

equal sides, and draw the line BB. Now, as AB = AB,
ABB is an isosceles A. From the vertex A, draw a line

bisecting the angle BAB. This line must be perpendic-
ular to the base BB, (Th. 18, Cor. 2). Since the \_BAO
is greater than the \_BAO, this line must meet BO, and

will not meet OB. From the point E, where the per-

pendicular meets BO, draw BB.

Now BB- BB, (Th. 18, Scholium 1).

Add BO to each
;
then BO= BE + EC.

But BE + EO is greater than BO.

Therefore BOy BO.

Hence the theorem
; if two triangles have two sides of

one equal to two sides of the other, etc.

Cor. Any point out of the perpendicular drawn from

the middle point of a line, is unequally distant from the

extremities of the line.

-f
y
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THEOREM XXIII,

A perpendicular is the shortest line that can be drawn from

any point to a straight line ; and if other lines be drawn from
the same point to the same straight line, that which meets it

farthestfrom the perpendicular will be longest ; and lines

at equal distances from the perpendicular, on opposite

sides, are equal.

Let A be any point without the

line BE ; let AB be the perpen-

dicular; and AC, AB, and AE
oblique lines: then, if BO is less

than BB, and BO— BE, we are to

show,
1st. That AB is less than AC

2d. That A is less than AB. 3d. That AC= AE.
1st. In the triangle ABO, as AB is perpendicular to

BC, the angle ABC is a right angle; and, therefore (by
Theorem 12, Cor. 4) ;

the angle BCA is less than a right

angle ; and, as the greater side is always opposite the

greater angle, AB is less than AC; and AC may be

any line not identical with AB
;

therefore a perpen-
dicular is the shortest line that can be drawn from A
to the line DE.

2d. As the two angles, AOB and A CD, are together

equal to two right angles, (Th. 1), and AOB is less than

a right angle, AOB must be greater than a right angle ;

consequently, the [__
B is less than a right angle ; and, in

the A AOB, AB is greater than AC, or A is less than

AB, (Th. 19 Cor).

3d. In the A's ABC and ABE, AB is common, CB=>

BE, and the angles atB are right angles; therefore, AC—
AE, (Th. 16).

Hence the theorem; a perpendicular is the shortest line

etc.

Cor. Conversely : if two equal oblique lines be drawn
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from the same point to a given straight line, they will

meet the line at equal distances from the foot of the per-

pendicular drawn from that point to the given line.

THEOREM XXIV.

The opposite sides, and also the opposite angles of any par-

allelogram, are equal.

Let ABOD be a parallelogram.

Then we are to show that AB = 1)0,

AD = BO, [__A - L °> and [_ADC
« \__ABO.
Draw a diagonal, as BD; now, be-

cause AB and DC are parallel, the al-

ternate angles ABB and BBC are equal, (Th. 6). Foi

the same reason, as AB and BO are parallel, the angles
ABB and BBO are equal. !Now, in the two triangles

ABB and BOB, the side BD is common,
the \_ABB = [_DBO (1)

tmd[_BDO = \_ABD (2)

Therefore, the angle A = the angle C, and the two tri-

angles are equal in all respects, (Th. 17); that is, the

sides opposite the equal angles are equal ; or, AB — DO,
andAD= BO. By adding equations (

1
) and (

2
) ?
we have

the angle ADO= the angle ABO, (Ax. 2).

Hence the theorem
;

the opposite sides, and the opposite

angles, etc.

Cor. 1. As the sum of all the angles of a parallelogram
is equal to four right angles, and the angle A is always

equal to the opposite angle O; therefore, if A is a right

angle, is also a right angle, and the figure is a rect-

angle.

Oor. 2. As the angle ABO, added to the angle A, gives
the same sum as the angles of the /\ADB; therefore,

the two adjacent angles of a parallelogram are together

equal to two right angles.

-f
X
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THEOREM XXV.

If the opposite sides of a quadrilateral are equal, they are

also parallel, and the figure is a parallelogram.

Let ABCD be any quadrilateral;

on the supposition thatAD= BC, and

AB =* DC. we are to prove thatAD is

parallel to BC, and AB parallel toDC
Draw the diagonal BD; we now

have two triangles, ABD and BOB,
which have the side BD common, AD of the one =. BO
of the other, and AB of the one = CD of the other

;

therefore the two A's are equal, (Th. 21), and the

angles opposite the equal sides are equal ; that is, the

angle ADB = the angle CBD ; but these are alternate

angles; hence, AD is parallel to BC, (Th. 7, Cor. 1);
and because the angle ABD = the angle BDC, AB is

parallel to CD, and the figure is a parallelogram.
Hence the theorem

; if the opposite sides of a quadri-

lateral, etc.

Cor. This theorem, and also Th. 24, proves that the

two A's which make up the parallelogram are equal;
and the same would be true if we drew the diagonal
from A to C; therefore, the diagonal of any parallelogram

bisects the parallelogram.

THEOREM XXVI.

The lines which join the corresponding extremities of two

equal and parallel straight lines, are themselves equal and

parallel; and the figure thus formed is a parallelogram.

On the supposition that AB is

equal and parallel to DC, we are to

prove that AD is equal and parallel

to BC; and that the figure is a par-

allelogram.
Draw the diagonalBD ; now, since
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AB and DO are parallel, and BB joins them, the alter-

nate angles ABB and BBO are equal ;
and since the

side AB = the side BO, and the side BB i« common to

the two A's ABB and OBB, therefore the two triangles

are eqnal, (Th. 16) ;
that is, AB —BO, the angle A =

0,

and the \__ABB = the [_BBO; also AB is parallel to

BO; and the figure is a parallelogram.

Hence the theorem ;
the lines which join the corresponding

extremities, etc.

THEOREM XXVII.

Parallelograms on the same base, and between the same

parallels, are equivalent, or equal in respect to area or sur-

face.

Let ABEO and ABBF be two

parallelograms on the same base

AB, and between the same paral-

lels AB and OB ; we are to prove
that these two parallelograms are

equal.

Now, OB and FB are equal, be-

cause they are each equal to AB, (Th. 24) ; and, if from

the whole line OB we take, in succession, OB and FB,
there will remain EB = OF, (Ax. 3) ; but BB = A 0, and

AF= BB, (Th. 24); hence we have two A's, OAF and

EBB, which have the three sides of the one equal to the

three sides of the other, each to each
; therefore, the tvro

A's are equal, (Th. 21). If, from the whole figure

ABBO, we take away the A OAF, the parallelogram
ABBF will remain ;

and if from the whole figure we take

away the other A EBB, the parallelogram ABEO will

remain. Therefore, (Ax. 3), the parallelogram ABBF=
the parallelogram ABEO.

Hence the theorem ; Parallelograms on the same base, etc.

4*
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THEOREM XXVIII.

Triangles on the same base and between the same parallel*

are equivalent.

Let the two A's ABE and ABF
have the same base AB, and be be-

tween the same parallels AB and

EF', then we are to prove that they
are equal in surface.

From B draw the line BB, par-

allel to AF; and from A draw the line AC, parallel to

BE ;
and produce EF, if necessary, to C and D ;

now the

parallelogram ABBF= the parallelogram ABEC, (Th.

27). But the A ABE is one half the parallelogram

ABEC, and the A ABF is one half the parallelogram

ABDF; and halves of equals are equal, (Ax. T); there-,

fore the A ABE - the A ABF.
Hence the theorem

; triangles on the same base, etc.

THEOREM XXIX.

Parallelograms on equal bases, and between the same par

allels, are equal in area.

Let ABCB and EFaH, be two

parallelograms on equal bases, AB
and EF, and between the same

parallels, AF and BG ; thenVe are

to prove that they are equal in area.

AB = EF=HG; but lines which join equal and

parallel lines, are themselves equal and parallel, (Th. 26) ;

therefore, ifAH said BGr be drawn, the figure ABGrlTis
a parallelogram == to the parallelogram ABCB, (Th. 27) ;

and if we turn the whole figure over, the two parallelo-

grams, G-HEF and GRAB, will stand on the same base,

GH, and between the same parallels ; therefore, GHEF
- GHAB, and consequently ABCB = EFGff, (Ax. 1).

Hence the theorem ; Parallelograms on equal bases, (tc.

DC H G
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Cor. Triangles on equal bases, and between the same

parallels, are equal in area. For,drawBB and EGr\ the

A ABB is one half of the parallelogram AC, and the

A EFGr is one half of the equivalent parallelogram FE;
therefore, the A ABB - the A EFG, (Ax. 7).

THEOREM XXX.

If a triangle and a parallelogram are upon the same or equal

bases, and between the same parallels, the triangle is equiva-

lent to one half the parallelogram.

Let ABC be a A, and ABBE a

parallelogram, on the same base AB,
and between the same parallels ; then

we are to prove that the A ABC is

equivalent to one half of the parallel-

ogram ABBE.
Draw EB the diagonal of the parallelogram ; now,

because the two A's ABC and ABE are on the same

base, and between the same parallels, they are equiva-

lent, (Th. 28) ;
but the A ABE is one half the parallel-

ogram ABBE, (Th. 25, Cor.) ;
therefore the A ABC is

equivalent to one half of the same parallelogram, (Ax. 7).

Hence the theorem
; if a triangle and a parallelogram,

etc

THEOREM XXXI.

The complementary parallelograms described about any

point in the diagonal of any parallelogram, are equivalent to

each other.

Let AC be a parallelogram, and

BB its diagonal ;
take any point,

as E, in the diagonal, and through
this point draw lines parallel to the

sides of the parallelogram, thus

forming four parallelograms.
We are now to prove that the complementary paral-

lelograms, AE and EC, are equivalent.
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By (Th. 25, Cor.) we learn that the A ABB = A BBC.
Also by the same Cor., A a = A b, and Ac = A<i; there-

fore by addition

Aa-fAc = A5 + Ac?.

Now, from the whole A ABB take A a + A e, and

from the whole A BBC take the equal sum, A b + A d,

and the remaining parallelogramsAE and EC are equiv~

alent, (Ax. 3).

Hence the theorem ;
the complementary parallelogram^

etc.

THEOREM XXXII.

The perimeter of a rectangle is less than that of any rhom-

hoid standing on the same base, and included between the same

parallels.

Let ABCB be a rect-

angle, and ABEF a rhom-

boid having the same base,

and their opposite sides

in the same line parallel

to the base.

We are now to prove that the perimeter ABCBA is less

than ABEFA.
Because AB is a perpendicular from A to the line BE

t

and AF an oblique line, AB is less than AF, (Th. 23).

For the same reason BC is less^than BE; hence AT) +
BC<AF+ BE. Adding the sum, AB + BC, to the first

member of this inequality, and its equal AB 4- FE to

the second member, we have AB + BC + CD + BA, or

the perimeter of the rectangle, less than AB -f BE -f

EF -f FA, or the perimeter of the rhomboid. Hen ?e

the theorem; the perimeter of a rectangle, etc.
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Thus far, areas have "been considered only relatively
and in the abstract. We will now explain how we may
pass to the absolute measures, or, more properly, to the

numerical expressions for areas.

THEOREM XXXIII.

The area of any plane triangle is measured by the pro*
duct of its base by one half its altitude ; or by one half of

the product of its base by its altitude.

Let ABO represent any triangle, AB
its base, and AD, at right angles to AB,
its altitude

;
now we are to show that the

area of ABO is equal to the product of

AB by one half of AB ; or one half of

AB by AB ;
or one half of the product of AB by AB.

On AB construct the rectangle ABED; and the area

of this rectangle is measured by AB into AB (Def.

54) ;
but the area of the A ABO is equivalent to one

half this rectangle, (Th. 30). Therefore, the area of the

A is measured by } AB x AB, or one half the product
of its base by its altitude. Hence the theorem

; the area

of any plane triangle, etc.

THEOREM XXXIV.

The area of a trapezoid is measured by one half the mm
of its parallel sides multiplied by the perpendicular distance

between them.

Let ABBQ represent any trape-

zoid; draw the diagonal BO, divid-

ing it into two triangles, ABO'and
BOB: OB is the base of one tri-

angle, and AB may be considered

as the base of the other ;
and EF is the common altitude

of the two triangles.

Now, by Th. 33, the area of the triangle BOB =-\OB
v EF; and the area of the A ABO= \AB X EF; but
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L K I II

by addition, the area of the two A's, or of the trape*

zoid, is equal to i (AB+ CD)xEF. Hence the theorem;
the area of a trapezoid, etc.

THEOREM XXXV.

If one of two lines is divided into any number of parts, the

rectangle contained by the two lines is equal to the sum of the

several rectangles contained by the undivided line and the seve-

ral parts of the divided line.

Let AB and AD be two lines,

and suppose AB divided into any
number of parts at the points E,

F, Gr, etc.
;
then the whole rect-

angle contained by the two lines

is AH, which is measured by AB
into AD. But the rectangle AL is measured by AB
into AD

;
the rectangle EK is measured by EF into EL,

which is equal to EF into AD; and so of all the other

partial rectangles ;
and the truth of the proposition is as

obvious as that a whole is equal to the sum of all its

parts. Hence the theorem
; if one of two lines is divided,

etc. ^/f ^ Uc ,

v. One*.X THEOREM XXXVI.

G B

X

C B

If a straight line is divided into any two parts, the square

described on the whole line is equivalent to the sum of the

squares described on the two parts plus twice the rectangle con-

tained by the parts.

Let AB be any line divided into

any two parts at the point 0; nowwe
are to prove that the square on AB
is equivalent to the sum of the

squares on A and OB plus twice the

rectangle contained by AC and CB.

On AB describe the square AD.

Through the point draw QM, par-

M D
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allel to BD
;
take BE = BO, and through E draw EKN,

parallel to AB. We now have OH, the square on OB, by
direct construction.

As AB = BD, and OB - £.0", by subtraction, AB—
OB = BD— BE; orA0= ED. But NK=AO, being

opposite sides of a parallelogram ;
and for the same rea-

son, KM= I7D. Therefore, (Ax. 1), NK= KM, and the

figure NM is a square on NK, equal to a square on .AG7.

But the whole square on AB is composed of the two

squares OE, NM, and the two complements or rectangles

AK and KB ; and since each of these latter is AC in

length, and BO in width, each has for its measure AC into

(7i?; therefore the whole square on AB is equivalent to

AC 2 + BC2 + 2A0x OB.

Hence the theorem
; if a straight line is divided into any

two parts, etc.

This theorem may be proved algebraically, thus :

Let w represent any whole right line divided into any
two parts a and b ;

then we shall have the equation
w = a + b

By squaring, w2 = a2
-f b

2
-f 2ab.

Oor. If a = b, then w2 = 4a2

; that is, the square de-

scribed on any line is four times the square described on

one half of it.

THEOREM XXXVII.

The square described on the difference of two lines is equiv-

alent to the sum of the squares described on the two lines di-

minished by twice the rectangle contained by the lines.

Let AB represent the greater of two lines, OB the

Jess line, and A their difference.

We are now to prove that the square described on A C
is equivalent to the sum of the squares on AB and BC
diminished by twice the rectangle contained by AB
and BO.

Conceive the square AF to be described on AB, and
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the square BL on CB
;
on AC describe H F

the square ACGM, and produce MG
to K. M

As GC=AC, and CL ^ CB, by
addition, (GC + CL), or GL, is equal

to AC + CB, or J.jB. Therefore, the

rectangle GE is AB in length, and

Oi? in width, and is measured by AB
y.BC.
Also AH= AB, and AM= J. (7; by subtraction, Jfff

= <7i?; and as MK= AB, the rectangle HK is J.i? in

length, and CB in width, and is measured by AB x BC;
and the two rectangles GE and .ffif are together equiva-

lent to 2AB x BC.

Now, the squares on AB andBCmake the whole figure

AHFELC; and from this whole figure, or these two

squares, take away the two rectangles HK and G E, and

the square on AC only will remain; that is,

AC 2 = AB* + B~C*— 2AB x BC
Hence the theorem

;
the square described on the differ

ence of two lines, etc.

This theorem may be proved algebraically, thus :

Let a represent the greater of two lines, b the less, and

d their difference ; then we must have this equation :

d = a — b

By squaring, d2 = a2 + b2— 2ab.

a a2

Cor. If d = b, then d = -~, and d2 = -r
; that is, the

equare described on one half of any line is equivalent

to one fourth of the square described on the whole line.

THEOREM XXXVIII.

The difference of the squares described on any two lines is

equivalent to the rectangle contained by the sum and difference

of the lines.

Let AB be the greater of two lines, and AC the less,

and on these lines describe the squares AB, AM; then, the
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difference of the squares on AB and A is the two rect-

angles EF and FO. We are now to

show that the measure of these reck

angles may be expressed by (AB + AC)
x(AB—AO).

i The length of the rectangleEF is ED,
or its equal AB; and the length of the

rectangle FO is MO, or its equal AO;
therefore, the length of the two together (if we con

ceive them put between the same parallel lines) will be

AB-\- AO; and the common width is OB, which is equal

to AB—AO; therefore, AB
2—A0 2= (AB+AO) x (AB

—AO).
Hence the theorem; the difference of the squares de-

scribed on any two lines, etc.

This theorem may be proved algebraically: thus,

Let a represent one line, and b another ;

Then a -f b is their sum, and a— b their difference ;

and (a + b) X (a
—

b)
= a2— b\

THEOREM XXXIX.

The square described on the hypotenuse of any right-angled

triangle is equivalent to the sum of the squares described on

the other two sides.

Let ABO represent any righkangled triangle, the right

angle at B; we are to prove that the square on A is

equivalent to the sum of two squares; one on AB, the

other on BO.

On the three sides of the triangle describe the three

squares, AB, AL and BM. Through the point B, draw
BNE perpendicular to AO, and produce it to meet tho

line Grim K; also produce AF to meet CrI in S, and
ML to meet GI produced in K.

Remark.— That the lines, GI and ML, produced, meet at the point

BT, may be readily shown. As the proof of this fact is not necessary for

tht- demonstration, it is left as an exercise for the learner.

5 D
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The angle BAG is a right angle, and the angle NAH
is also a right angle ;

if

from these equals we

subtract the common

angle BAH, the re-

maining angle, BAO,
must be equal to the re-

maining angle &AH.
The angle G- is a right

angle, equal to the

angle ABC; and AB
= AGr; therefore, the

two A's ABO and

AGrH are equal, and

AH=AQ. But^<7=
AF; therefore, AH=
AF. Now, the two

parallelograms, AE and AHKB are equivalent, because

they are upon equal bases, and between the same paral-

lels, Zffand UK, (Th. 29).

But the square AI, and the parallelogram AHKB, are

equivalent, because they are on the same base, AB, and

between the same parallels, AB and GrK; therefore, the

square AI, and the parallelogram AF, being each equiv-

alent to the same parallelogram AHKB, are equivalent

to each other, (Ax. 1). In the same manner we may
prove that the square BM is equivalent to the rectangle

ND ; therefore, by addition, the two squares, AI and

BM, are equivalent to the two parallelograms, AF and

ND, or to the square AD.
Hence the theorem ; the square described on the hypoU

nuse of a right-angled triangle, etc.

Cor. If two right-angled triangles have the hypotenuse, and

a side of the one equal to the hypotenuse and a side of the

other, each to each, the two triangles are equal.
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Let ABO ard AGS be the two A's, in which we sap-

pose AC= AH, and BC= GH; then will AG = AB
For, we have AC 2 = AB2

+ ff(72

,

or, by transposing, AC
2— BO2 = ~A&,

and AE2 = ~AG
2

+G1I
2

,

or, by transposing, AH2— GH2= AG2

.

But by the hypothesis AC
2 —~BQ2 = AS*— (JS* ;

hence, AB2 = J.G2

, or, ^J5 = A G.
Scholium.—The two sides, AB and BC, may vary, while A C remain*

constant. AB may be equal to BC\ then the point JVwill be in th*

middle of A C. When AB is very near the length of A C, and BC very

email, then the point N falls very near to C. Now as AE and ND are

right-angled parallelograms, their areas are measured by the product
of their bases by their altitudes ; and it is evident that, as they have the

same altitude, these areas will vary directly as their bases AN and

NC; hence the squares on AB and BC, which are equivalent to those

rectangles, vary as the lines AN and NC.

The following outline of the demonstration of this pro-

position is presented as a useful disciplinary exercise for

the student.

We employ the same figure, in which no change is

made except to draw through the line OP, parallel toBK.
The first step is to prove the equality of the triangles

AGE and ABO, whence AH = AC. But AO = AF;
therefore AH= AF.
The parallelograms AFEJSF and AEKB are equiva

lent. Also, theparallelogramAHKB= the square ABIG,
(Th. 27), and the parallelogram KBCP=NEDC=square
BOML. Now, by adding the equals

AFEN= ABIG
JSTEBO = BOML

we obtain AFDO = ABIG + BOML.
That is, the square on AO is equivalent to the sum of

the squares on AB and BO.

The great practical importance of this theorem, in the

extent and variety of its applications, and the frequency
of its use in establishing subsequent propositions, ren-

ders it necessary that the student should master it com-

pletely. To secure this end, we present a
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Second Demonstration

Let ABO be a triangle

right-angled at B. On the

hypotenuse AO, describe the

squareAOEB. From B and

E let fall the perpendiculars

Bb and Ed, on J.1? and AB
produced. Draw Bn and Ca,

making right angles with

Ed.

We give an outline only
of the demonstration, requiring the pupil to make it

complete.
First Part.—Prove the four triangles ABO, AbB, BnE,

and EaO, equal to each other.

The proof is as follows: The A's ABO and BnE are

equal, because the angles of the one are equal to the

angles of the other, each to each, and the hypotenuse
AO of the one, is equal to the hypotenuse BE of the

other. In like manner, it may be shown that the a's

AbB and EaO are equal.

Now, the sum of the three angles about A, is equal to

the sum of the three angles of the A ABO; and if, from

the first sum, we take \__BAO + [__ OAB, and from the

second we take L^ + L GAB == [_BAO+ [_ OAB, the

remaining angles are equal ;
that is, [__ BAb is equal to

\__AOB ;
hence the A's ABO and BbA have their angles

equal, each to each; and since A(7= BA, the A's are

themselves equal, and the four triangles ABO, AbB,

DnE, and EaO, are equal to each other.

Second.— Prove that the square bBnd is equal to a

iquare on AB. The square BdaO is obviously on BO.

Third.—The area of the whole figure is equal to the

square on AO, and the area of two of the four equal

right-angled triangles.

Also, the area of the whole figure is equal to two other
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Bquares, bDnd and daOB, and two of the tour equal tri-

angles, DnE and EaO,

Omitting or subtracting the areas of two of the four

right-angled a's from each of the two expressions for

the area of the whole figure, there will remain the square

on AO, equal to the sum of the two squares, Dndb and

daCB.

That is, AB* + BO* = AC*.

Hence the theorem
;
the square described on the hypote-

nuse of a right-angled triangle, etc.

Scholium.—Hence, to find the hypotenuse of a right-angled triangle,

extract the square root of the sum of the squares of the two sides about

the right angle,

THEOREM XL.

In any obtuse-angled triangle, the square on the side oppo-

site the obtuse angle is greater than the sum of the squares

on the other two sides, by twice the rectangle contained by

either side about the obtuse angle, and the part of this side

produced to meet the perpendicular drawn to it from the

vertex of the opposite angle.

Let ABO be any triangle in which

the angle at B is obtuse. Produce

either side about the obtuse angle,
as OB, and from A draw AD perpen-
dicular to OB, meeting it produced
atD.

It is obvious that OD m OB -f BD,

By Th. 36 we have, CD* = CB* + 20B x BD + JU)',

Adding AD to each member of this equation, we have

AD* + CD*=CB*t BD* + AD 1

+ 20B x BD.

But, (Th. 39), the first member of the last equation is

equal to AO%

,
and

BD* -f AD* - AB %

,

5*
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Therefore, this equation becomes

~AO
% = CB 2

+ AB* + 20B x BD.

That is, the square on A is equivalent to the sum of

the squares on OB and AB, increased by twice the rect-

angle contained by CB and BD.
Hence the theorem; in any obtuse- angled triangle, the

square on the side opposite the obtuse angle, etc.

Scholium.—Conceive AB to turn about the point A, its intersection

with CD gradually approaching D. The last equation above will be

true, however near this intersection is to D, and when it falls upon D
the triangle becomes right-angled.

In this case the line BD reduces to zero, and the equation becomes

AC 2= CB2 + AB*
y
in which CB and AB are now the base and per-

pendicular of a right-angled triangle. This agrees with Theorem 39,

as it should, since we used the property of the right-angled triangle

established in Theorem 39 to demonstrate this proposition ;
and in the*

equation which expresses a property of the obtuse-angled triangle, we
have introduced a supposition which changes it into one which is

right-angle 1.

THEOREM XLI.

In any triangle, the square on a side opposite an acute angle

is less than the sum of the squares on the other two sides, by

twice the rectangle contained by either of these sides, and the

distance from the vertex of the acute angle to the foot of the

perpendicular let fall on this side, or side produced, from the

vertex of its opposite angle.

Let ABO, either

figure, represent

any triangle ;
an

acute angle, OB
the base, and AB
the perpendicular,

which falls either

without or on the base. Now we are to prove that

AB*=OB 2

-\- AO 2— 20Bx OB.
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From the firs t figure we getBD=CD—CB ( 1 )

and from the second BD=CB—CD (
2

)

Either one of these equations will give, (Th. 37),

BD2= CD2 + CB 2—2CD x OB.

AddingAD
2
to each member and reducing, we obtaiu,

(Th. 39), AB
2 - AC 2 + CB 2— 2CBx CD, whi«h proves

the proposition. Hence the theorem.

THEOREM XLII.

If in any triangle a line be drawn from any angle to the

middle of the opposite side, twice the square of this line,

together with twice the square of one half the side bisected, will

be equivalent to the sum of the squares of the other two sides

LetAB be a triangle, and

M the middle point of its

base.

Then we are to prove that

2AM2

+ 2CM2 = AC2

+AB*.
Draw AD perpendicular to

the base, and make AD = p,

AC=b, AB =
c, CB=2a,

AM mm m, and MD — x; then CM= a, CD = a+x, DB
= a— x,

Now by, (Th. 39), we have the two following equations :

^ + (a
—

aO»
= c» (1)

f + (a + xf = b* (2)

By addition, 2p
% + 2x2 + 2a2= #• + <?. But p* + z»- m\

Therefore, 2m* + 2a7 = b* + <?\

This equation is the algebraic enunciation of tho

theorem.
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THEOREM XLIII.

The two diagonals of any parallelogram bisect each other ;

and the sum of their squares is equivalent to the sum of the

squares of the four sides of the parallelogram,

~LetABQB be any parallelogram,

and A and BB its diagonals.

We are now to prove,

1st. That AM - EQ, and BE -
EB.

2d. That AC2

+ BD
2 = ~AB 2 + ~BQ* 4- CD

2

+~AD\
1. The two triangles ABE and QBE are equal, be-

cause AB — QD, the angle ABE= the alternate angle

QBE, and the vertical angles at E are equal ; therefore,

AE, the side opposite the angle ABE, is equal to QE,
the side opposite the equal angle QBE; also EB, the

remaining side of the one A, is equal to EB, the remain-

ing side of the other triangle.

2. As AQB is a triangle whose base, A Q, is bisected

in E, we have, by (Th. 42),

2AE2

+ 2EB2 = AB2

+ DC 2
( l )

And as AQB is a triangle whose base, ^4 C\ is bisected

in i£, we have

2AE2 + 2EB2
==~AB

2

+ BQ 2
(2)

By adding equations (1) and (2), and observing that

EB* m EB2

,
we have

4AE2 + 4EB2 - AD2 + 2><7* +"AS 2

+7RP
But, four times the square of the half of a line is equiv-

alent to the square of the whole line, (Th. 36, Corollary) ;

therefore ±AW = AQ\ and 4EB2 = BB2

;
and by sub-

stituting these values, we have

AQ 2 + BB2 =~AB2

+~BQ
%

+~BQ
2

+ ~AB
2

,

which equation conforms to the enunciation of tfc*

theorem.
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THEOREM XLV.

If a straight line be divided into two equal parts, and also

into two unequal parts, the rectangle contained by the two un-

equal parts together with the square of the line between the

points of division, will be equivalent to the square on one half

the line.

Let AB be a line bisected in 0, and divided into two

unequal parts in B,

We are to prove
that AB x BB + . p c

Cff^AQ\ov~CB\
B A

We see by inspection that AB = AC+ CB, and BB
m, AC— OB; therefore by (Th. 38), we have

ABx BB = AC2

—~CB\

By adding UB
2

to each of these equals, we obtain

AB x BB + ~CD* =~AC
%

Hence the theorem.
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BOOK II

PROPORTION.

DEFINITIONS AND EXPLANATIONS.

The word Proportion, in its common meaning, de-

notes that general relation or symmetry existing between

the different parts of an object which renders it agree-

able to our taste, and conformable to our ideas of beauty
or utility ; but in a mathematical sense.

1. Proportion is the numerical relation which one quan-

tity bears to another of the same kind.

As the magnitudes compared must be of the same kind,

proportion in geometry can be only that of a line to a

line, a surface to a surface, an angle to an angle, or a volume

to a volume.

2. Ratio is a term by which the number which meas-

ures the proportion between two magnitudes is desig-

nated, and is the quotient obtained by dividing the one

by the other. Thus, the ratio of A to B is --, or A : B,

in which A is called the antecedent, and B the consequent.

If, therefore, the magnitude A be assumed as the unit or

standard, this quotient is the numerical value of B ex-

pressed in terms of this unit.

It is to be remarked that this principle lies at the found-

ation of the method of representing quantities by num-
bers. For example, when we say that a body weighs

twenty-five pounds, it is implied that the weight of this

body has been compared, directly or indirectly, with that

of the standard, one pound. And so of geometrica
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magnitudes ; when a line, a surface, or a volume is said

to be fifteen linear, superficial, or cubical feet, it is un-

derstood that it has been referred to its particular unit,

and found to contain it fifteen times
;
that is, fifteen is

the ratio of the unit to the magnitude.
"When two magnitudes are referred to the same unit,

the ratio of the numbers expressing them will be the

ratio of the magnitudes themselves.

Thus, if A and B have a common unit, a, which is

contained in A, m times, and in B, n times, then A =• ma

j t> , B na n
and B = na. and -r = — = —.

A ma m
To illustrate, let the

line A contain the line . A

a six times, and let the
,

line B contain the same a

line a five times : then
i i i

j j j

A=6a and B—5a, which B

. B ba 5
glVe 2

=
6-a

=
6-

3. A Proportion is a formal statement of the equality

of two ratios.

Thus, if we have the four magnitudes A, B, and D,

fmch that -r = ^, this relation is expressed by the pro-

portion A: B :: C: D, or A : B = : D, the first of

which is read, A is to B as O is to D ; and the second,

the ratio of A to B is equal to that of to D.

4. The Terms of a proportion are the magnitudes, or

caore properly the representatives of the magnitudes

compared.
5. The Extremes of a proport on are its first and fourth

terms.

6. The Means of a proportion are its second and third

terms.

7. A Conplet consists of the two terms of a ratio. The
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first and second terms of a proportion are called the

first couplet, and the third and fourth terms are called

the second couplet.

8. The Antecedents of a proportion are its first and

third terms.

9. The Consequents of a proportion are its second and

fourth terms.

In expressing the equality of ratios in the form of a

proportion, we may make the denominators the ante-

cedents, and the numerators the consequents, or the

reverse, without affecting the relation "between the magni-
tudes. It is, however, a matter of some little importance
to the "beginner to adopt a uniform rule for writing the

terms of the ratios in the proportion ;
and we shall always,

unless otherwise stated, make the denominators of the

ratios the antecedents, and the numerators the conse-

quents.*

10. Equimultiples ofmagnitudes are the products arising

from multiplying the magnitudes by the same number.

Thus, the products, Am and Bm, are equimultiples of

A and B.

U. A Mean Proportional between two magnitudes is a

magnitude which will form with the two a proportion,

when it is made a consequent in the first ratio, and an

antecedent in the second. Thus, if we have three mag-
nitudes A, By

and 0, such that A : B : : B : (7, B is a

mean proportional between A and 0.

12. Two magnitudes are reciprocally, or inversely pro-

portional when, in undergoing changes in value, one is

multiplied and the other is divided by the same number.

Thus, ifA andB be two magnitudes, so related that when
j>A becomes mA, B becomes —

,
A and B are said to be

m
inversely proportional.

* For discussion of the two methods of expressing Ratio, see Uni

vorsity Algebra.

6
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13. A Proportion is taken inversely when the ante-

cedents are made the consequents and the consequents
the antecedents.

14. A Proportion is taken alternately, or by alternation,

when the antecedents are made one couplet and the con-

sequents the other.

15. Mutually Equiangular Polygons have the same num-
ber of angles, those of the one equal to those of the

ethers, each to each, and the angles like placed.

16. Similar Polygons are such as are mutually equi-

angular, and have the sides about the equal angles, taken

in the same order, proportional.

17. Homologous Angles in similar polygons are those

which are equal and like placed ;
and

18. The Homologous Sides are those which are like dis-

posed about the homologous angles.

THEOREM I.

If the first and second of four magnitudes are equal, and

also the third and fourth, the four magnitudes may form a

proportion.

Let A, B, 0, and B represent four magnitudes, such

that A — B and C—B; we are to prove that A : B : :

C : B.

Now, by hypothesis, A is equal to B, and their ratio is

therefore 1
;
and since, by hypothesis, is equal to B,

their ratio is also 1.

Hence, the ratio of A to B is equal to that of C to B ;

and, (by Def. 3),

A : B : : : D.

Therefore, four magnitudes which are equal, two and

two, constitute a proportion.
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THEOREM II.

If four magnitudes constitute a proportion, the product of
the extremes is equal to the product of the means.

Let the four magnitudes A, B, C, and D form the pro-

portion A : B : : : D
;
we are to prove that A x D

= Bx C.

The ratio of A to B is expressed hy -j
= r.

The ratio of to B is expressed hy ^ = r.

Hence, (Ax. 1), ^ - ~.

Multiplying each of these equals hy A x C, we have

B x C=Ax D.

Hence the theorem
; iffour magnitudes are in propor-

Hon, etc.

Cor. 1. Conversely; If we ha/ve the product of two mag-
nitudes equal to the product of two other magnitudes, they

will constitute a proportion of which either two may be

made the extremes and the other two the means.

Let the magnitudes B x C = A x D. Dividing both

members of the equation by A x C, we obtain

B _B
A~ C
Hence the proportion A : B : : (7:2).

Cor. 2. If we divide both members of the equation

Ax B = B x C by A,

we have D =—-
A
— .A

That is, to find the fourth term of a proportion, mul-

tiply the second and third terms together and divide the pro-

duct by the first term. This is the Rule of Three of

Arithmetic-
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This equation shows that any one of the foui terms

can be found by a like process, provided the other three

are given.

THEOREM III.

If three magnitudes are continued proportionals, the product

of the extremes is equal to the square of the mean.

Let A, B, and represent the three magnitudes :

Then A : B : : B : C, (by Def. 11).

But, (by Th. 2), the product of the extremes is equal
to the product of the means

; that is, A x (7= B*.

Hence the theorem ; if three magnitudes, etc,

THEOREM IV.

Equimultiples of any two magnitudes have the same ratio

as the magnitudes themselves ; and the magnitudes and their

equimultiples may therefore form a proportion.

Let A and B represent two magnitudes, and mA and

mB their equimultiples.

Then we are to prove that A : B : : mA • *nB,

The ratio of A to B is ~, and of mA Us mB is

mB B '. ,.—T = -r, the same ratio.
mA A 7

Hence the theorem; equimultiples of any twc &4y*i

tudes, etc,

THEOREM V.

If four magnitudes are proportional, they will be propor~
tional when taken inversely.

If A : B : : mA : mB, then B : A : : mB : mA
;

For in either case, the product of the extremes equals
that of the means; or the ratio of the couplets is the

same.

Hence the theorem
; if four quantities are propor-

tional, etc.
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THEOREM VI.

Magnitudes which are proportional to the same propor

tionals, are proportional to each other.

If A : B = P : Q 1 Then we are to prove that

and a : b = P : Q) A : B= a : b.

From the 1st proportion, — = ~ ;
A. Jr

From the 2d " - = -^;
a P
7? h

Therefore, by (Ax. 1), -j
=

-, or A : B = a : b.
jA. a

Hence the theorem
; magnitudes which are proportional

to the same proportionals, etc.

Cor. 1. This principle may be extended through any
number of proportionals.

Cor. 2. If the ratio of an antecedent and consequent of one

proportion is equal to the ratio of an antecedent and conse-

quent of another proportion, the remaining terms of the two

proportions are proportional.

For, if A : B : : C : D
and M : N : : P : Q

in which A= W then C=P>
hence : D : : P : Q.

THEOREM VII.

If any number of magnitudes are proportional, any one of

the antecedents will be to its consequent as the sum of all the

antecedents is to the sum of all the consequents.

Let A, B, C, B, E, etc., represent the several magni
tudes whi 3h give the proportions

6*

A : B
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To which we may annex the identical proportion,

A : B : : A : B.

Now, (by Th. 2), these proportions give the following

equations,
A x D - B x
A x F = B x E
A x H= B x a
A x B = B x A, etc. etc.

From which, by addition, there results the equation,

A(B + D + F+ H, etc.)
= B(A+ C+F+ #, etc.)

But the sums B + D + F, etc., and A -f C + U, etc.,

may be separately regarded as single magnitudes ; there-

fore, (Th. 2, Cor. 1),

A : B :: A+C+F+ G, etc. : .B + D -f #+ J7", etc.

Hence the theorem
; if any number ofmagnitudes are pro-

portional, etc.

THEOREM VIII.

If four magnitudes constitute a proportion, the first will be

to the sum of the first and second as the third is to the sum of

the third andfourth.

By hypothesis, A : B :: C : D; then we are to prove
that A : A + B :: : C + D.

By the given proportion, — = — .

Adding unity to both members, and reducing them to

the form of a fraction, we have—-— = —^— . Chang-

ing this equation into its equivalent proportional form,

we have
A : A 4- B : : : C + B.

Hence the theorem ; iffour magnitudes constitute a pro*

portion, etc.
T>

Cor. If we subtract each member of the equation -j
=
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D
p from unity, and reduce as before, we shall have

A : A — B :: : C— D.

Hence also
; if four magnitudes constitute a proportion,

the first is to the difference between the first and second, as the

third is to the difference between the third andfourth.

THEOREM IX.

Iffour magnitudes are proportional, the sum of the first and

second is to their difference as the sum of the third andfourth
is to their difference.

Let A, B, 0, and D be the four magnitudes which give
the proportion

A : B :: C : D;
we are then to prove that they will also give the propor-
tion

A + B : A—B :: C + D : Q— D.

By Th. 8 we have A : A + B - : (7+2).

Aisoby Corollary, sameTh., A : A — B = C : C—D.
Xow, if we change the order of the means in these pro-

portions, which may be done, since the products of ex-

tremes and means remain the same, we shall have

A : C = A + B : C+ B.

A : C = A— B : C—B.
Hence, (Th. 6), we have

A + B : 0+ D - A — B : C—D.
Or, A + B : A— B - + D : Q—D.
Ilence the theorem

; iffour magnitudes are proportional,

etc.

THEOREM X.

If four magnitudes are proportional, like powers or like

roots of the same magnitudes are also proportional.

If the four magnitudes, A, B, C, and D, give the pro-

portion
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A : B : : : D,
we are to prove that

An
: B n

:: Cn
: Bn

.

The hypothesis gives the equation — = — . EaisingA G

both members of this equation to the nth power, we have

B n D n

-^
=

-^, which, expressed in its equivalent proportional

form, gives
An

: B n
:: Cn

: B n
.

If n is a whole number, the terms of the given propor-
tion are each raised to a power ; but if n is a fraction

having unity for its numerator, and a whole number for its

denominator, like roots of each are taken.

As the terms of the proportion may be first raised to

like powers, and then like roots of the resulting propor-
tion be taken, n may be any number whatever.

Hence the theorem
; if four magnitudes, etc.

THEOREM XI.

If four magnitudes are proportional, and also four others,

the products which arise from multiplying the first four by the

second four, term by term, are also proportional.

Admitting that A : B
and X: Y
We are to show that AX : BY

: B,
Mi N,

QMiBK
From the first proportion,

— = —
;

a. o

Y N
From the second, __ = -_.X M
Multiply these equations, member by member, and

AX CM'
Or, AX i BY n CM: BN.
The same would be true in any number oi proportions.

Hence the theorem
; if four magnitudes are, etc.
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THEOREM XII.

Iffour magnitude* are 'proportional, and also four others,

the quotients which arise from dividing the first four by the

swondfour, term by term, are proportional.

By hypothesis, A : B : : : D,
and X : Y ::M: K
Multiply extremes and means, AD == OB, ( 1 )

and XN=MY. (2)

Divide (1) hy (2), and ± x
*
? JJ

x
*

Convert these four factors, which make two equal pro-

ducts, into a proportion, and we have

X :

Y'
: M l

JV"

By comparing this with the given proportions, we find

it is composed of the quotients of the several terms of

the first proportion, divided by the corresponding terms

of the second.

Hence the theorem
; iffour magnitudes are proportional,

etc.

THEOREM XIII.

If four magnitudes are proportional, we may multiply the

first couplet, the second couplet, the antecedents or the conse-

quents, or divide them by the same quantity, and the results

will be proportional in every case.

Let the four magnitudes A, B, 0, and D give the pro-

portion A: B :: 0: D. By multiplying the extremes

and means we have

A.D = B.O (1)

Multiply both members of this equation by any num-

ber, as a, and we have

aA.D = aB.O

By converting this equation into a proportion in four

different ways, we have as follows :
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THEOREM XV.

If two parallelograms are equal in area, the base and per-

pendicular of either may be made the extremes of a propor-

tion, of which the base and perpendicular of the other are the

means.

Let ABQD,
and HLNM,
be two paral-

lelograms hav-

ing equal areas,
A

by hypothesis ;
then we are to prove that

AB : LN : : MK : BF,
in which MK and BF are the

altitudes or perpendiculars of

the parallelograms.
This proportion is true, if

the product of the extremes

is equal.to the product of the means;
that is, if the equation

AB.BF = LN.MKis true.

But AB.BF is the measure of the rectangle ABFE,
by (Definition 54, B. I.), and this rectangle is equal in

area to the parallelogram ABOD, (B. I., Th. 27).

In the same manner, we may prove that LN.MK is

the measure of the parallelogram NLHM. But these

two parallelograms have equal areas by hypothesis.

Therefore, AB.BF= LN.MK is a true equation, and

Th. 2, Cor. 1), gives the proportion
AB : LN : : MK : BF.

Hence the theorem
; if two parallelograms are equal in

area, etc.

THEOREM XVI.

Parallelograms having equal altitudes are to each other as

their bases.

Since parallelograms having equal bases and equal
altitudes are equal in area, however much their angle*
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may differ, we can suppose the two parallelograms under

consideration to be mutually equiangular, without in the

least impairing the generality of this theorem. There-

fore, let ABOB
andAEFB be two

parallelograms
having equal alti-

tudes,and letthem
be placed with

their bases on the same line AE, and let the side, ABt

be common. First suppose their bases commensurable,
and that AE being divided into nine equal parts, AB
contains five of those parts.

If, through the points of division, lines be drawn paral-

lel to AB, it is obvious that the whole figure, or the

parallelogram, AEFB, will be divided into nine equal

parts, and that the parallelogram, ABOB, will be com-

posed of five of those parts.

Therefore, ABCB : AEFB : : AB : AE : : *5 : 9.

Whatever be the whole numbers having to each other

the ratio of the lines AB and AE, the reasoning would

remain the same, and the proportion is established when

the bases are commensurable. But if the bases are not

to each other in the ratio of any two whole numbers, it

remains still to be shown that

AEFB : ABOB :: AE : AB (1)

If this propor-

tion is not true,

there must be a

line greater or less

than AB, towhich

AE will have the A B L

same ratio that AEFB has to ABOB.

Suppose the fourth proportional greater than AB, as

AK, then,

AEFB : ABOB :: AE : AK (2).
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If we now divide the line AE into equal parts, each

less than the line BK, one point of division, at least, will

fall between B and K. Let L be such point, and draw

LM parallel to BO.
This construction makes AE and AL commensura-

ble; and by what has been already demonstrated, we
have

AEFD : ALMD :: AE : AL. (3)

Inverting the means in proportions (
2

) and ( 3 ), they

become
AEFD : AE :: ABQD : AK;

and AEFD : AE : : ALMD : AL.

Hence, (Th. 6),

ABOD : AK : : ALMD : AL.

By inverting the means in this last proportion, we have

ABOD : ALMD : : AK : AL.

But AK is, by hypothesis, greater than AL; hence, if

this proportion is true, ABOD must be greater than

ALMD; but on the contrary it is less. We therefore

conclude that the supposition, that the fourth propor-

tional, AK, is greater than AB, from which alone this

absurd proportion results, is itself absurd.

In a similar manner it can be proved absurd to sup-

pose the fourth proportional less than AB.
Therefore the fourth term of the proportion (

1
) can be

neither less nor greater than AB
;

it is then AB itself,

and parallelograms having equal altitudes are to each

other as their bases, whether these bases are commensur-
able or not.

Hence the theorem
; Parallelograms having equal alti-

tudes, etc.

Oor. 1. Since a triangle is one half of a parallelogram

having the same base as the triangle and an equal alti-

tude, and as the halves of magnitudes have the same
ratio as their wholes

; therefore,
7
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Triangles having the same or equal altitudes are to each

other as their bases.

Cor. 2. Any triangle has the same area as a right-

angled triangle having the same hase and an equal alti-

tude
;
and as either side about the right angle of aright-

angled triangle may be taken as the base, it follows that

Two triangles having the same or equal bases are to each

other as their altitudes.

Cor. 3. Since either side of a parallelogram may be

taken as its base, it follows from this theorem that

Parallelograms having equal bases are to each other as their

altitudes.

THEOREM XVII.

If lines are drawn cutting the sides, or the sides 'produced, of

a triangle proportionally, such secant lines are parallel to the

base of the triangle ; and conversely, lines drawn parallel

to the base of a triangle cut the sides, or the sides produced,

proportionally.

Let ABC be any triangle, and

draw the line BE dividing the sides

AB and AC into parts wmich give
the proportion

AB : BB : : AE : EC.

We are to prove that BE is parallel

to BC.

IfBE is not a parallel through
the point B to the line BC, suppose
Bm to be that parallel ;

and draw the

lines BC and Bm.

Now, the two triangles ABm and

mBC, have the same altitude, since

they have a common vertex, B, and their bases in the

same line, AC; hence, they are to each other as their

bases,Am and mC, (Th. 16, Cor. 1).
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That is, A ADm : A mDQ : : Am : mO,

Also, A AmD : £ J>mB :: AD : DB.

But, since Dm is supposed parallel to BO, the triangles

DBm and DCm have equal areas, because they are on

the same base and between the same parallels, (Th. 28,

B.I).

Therefore the terms of the first couplets in the two

preceding proportions are equal each to each, and conse-

quently the terms of the second couplets are proportional,

(Theorem 6).

That is, AD : DB : : Am : mO
But AD : DB :: AE : EQ by hypothesis.

Hence we again have two proportions having the first

couplets, the same in both, and we therefore have

AE : EC : : Am : mO

By alternation this becomes

AE : Am :: EC : mO
That is, AE is to Am, a greater magnitude is to a less,

as EQ is to mO, a less to a greater, which is absurd.

Had we supposed the point m to fall between E and 0,

our conclusion would have been equally absurd
;
hence

the suppositions which have led to these absurd results

are themselves absurd, and the line drawn through the

point D parallel to BO must intersect AO in the point
E. Therefore the parallel and the line DE are one and

the same line.

Conversely : JfDE be drawn parallel to the base of the

triangle, then will

AD i DB :: AE i EQ
For as before,

A ADE : a EDO : : AE : EQ
and A DEB : A ADE x; DB i AD

Multiplying the corresponding terms of these propor-
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tions, and omitting the common factor, a ADE, in the

first couplet, we have

A DEB : A EDO : : AE x DB : EC x AD.
But the a's DEB and EDO have equal areas, (Th. 28,

B. I) ;
hence AE x DB = EC x AD, which in the form

of a proportion is

AE : EC : : AD : DB
or, AD : DB : : AE : EC

and therefore the line parallel to the base of the triangle,
divides the sides proportionally.

It is evident that the reasoning would remain the same,
had we conceived ADE to be the triangle and the sides

to be produced to the points B and 0.

Hence the theorem; if lines are drawn cutting the

sides, etc.

Cor. 1. Because DE is parallel to BO, and intersects

the sides AB and A 0, the angles ADE and ABO are

equal. For the same reason the angles AED and AOB
are equal, and the A's ADE and ABO are equiangular.

Let us now take up the triangle ADE, and place it on

ABO; the angle ADE falling on |__ B, the side AD on

the side AB, and the side DE on the side BO
Now, since the angle A is common, and the angles

AED and AOB are equal, the side AE of the A ADE,
in its new position, will be parallel to the side AO of the

A ABO.
The last proportion of this Th. gives (Th. 8 and Th. 5),

AD : AE w AB : AC
From the above construction we obtain, by a similar

course of reasoning, the proportion

AD : DE : : AB : BO
And in like manner it may be shown that

AE : ED :: AO : OB
That is, the sides about the equal angles of equiangular

triangles, taken in the same order, are proportional, and the

triangles are similar, (Def. 16).
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Cor. 2. Two triangles having an angle in one equal to an

angle in the other, and the sides about these equal angles pro*

portional, are equiangular and similar.

For, if the smaller triangle be placed on the larger,

the equal angles of the triangles coinciding, then will

the sides opposite these angles be parallel, and the triau-

gles will therefore be equiangular and similar.

THEOREM XVIII.

If any triangle have its sides respectively proportional to

the like or homologous sides of another triangle, each to each,

then the two triangles will be equiangular and similar.

Let the triangle abc have its sides pro-

portional to the triangle ABO; that is, ac

to A as cb to OB, and ac to AC as ab to

AB ;
then we are to prove that

the a's, abc and ABO, are equi-

angular and similar.

On the other side of the base,

AB, and from A, conceive the

angle BAB to be drawn = to the

|__
a

;
and from the point B,

conceive the angle ABB to be

drawn = to the [_ b. Then the third [__ D must be =a

to the third [_ o, (B. I, Th. 12, Cor. 2) ; and the A ABB
will be equiangular to the A abc by construction.

Therefore, ac : ab = AB : AB
By hypothesis, ac : ab = AO : AB
Hence, AB : AB = A : AB, (Th. 6).

In this last proportion the consequents are equal;

therefore, the antecedents are equal : that is,

AB - AO
In the same manner we may prove that

BB = OB
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But AB is common to the two triangles ; therefore,

the three iides of the A ABB are respectively equal to

the three sides of the A ABO, and the two a's are equal,

(B. I, Th. 21).

But the A's ABB, and abc, are equiangular by con-

struction; therefore, the A's, ABO, and abc, are also

equiangular and similar.

Hence the theorem
; if any triangle have its sides, etc,

Second Demonstration.

Let abc and ABO be two triangles

whose sides are respectively propor-

tional, then will the triangles be equi-

angular and similar.

That is, L« = LA L& = L 2> and

If the [_ c be in fact

equal to the [__ 0, the tri-

angle abc can be placed
on the triangle ABO, ca

taking the direction of

OA and cb of OB. The
line ab will then divide

the sides OA and OB proportionally, and will therefore

be parallel to AB, and the triangles will be equiangular
and similar, (Th. 17).

But if the [_c be not equal to the [_ 0, then place ae

on i(J as before, the point c falling on 0. Under the

present supposition cb will not fall on OB, but will take

another direction, OV, on one side or the other of OB
Make OV equal to cb and draw aV.

Now, the A abc is represented in magnitude and posi-

tion by the A a VO; and if, through the point a, the line

ab be drawn parallel to AB, we shall have

Oa : OA n ab : AB;
hut by (Hy.) Oa : OA : : aV : AB.
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Hence, (Th. d),

ab : AB :: aV : XB;
which requires that ab = aV, but (Th. 22, B. 1) ab can

not be equal to aV; hence the last proportion is absurd,

and the supposition that the [__ c is not equal to the [__ (7,

which leads to this result, is also absurd. Therefore,

the [_c is equal to the [__ (7,
and the triangles are equi-

angular and similar.

Hence the theorem ; if any triangle have its sides, etc.

THEOREM XIX.

If four straight lines are in proportion, the rectangle con-

tained by the lines which constitute the extremes, is equivalent

to that contained by those which constitute the means of the

proportion.

Let A, B, C, D, represent the four A'~

lines
;

then
T>

we are to show, geo- c ,

metrically, that A x JD — B x Q. D j

Place A and B at right angles to each

other, and draw the hypotenuse. Also place

and D at right angles to each other, and

draw the hypotenuse. Then bring the two

triangles together, so that shall be at right

angles to B, as represented in the figure.

Now, these two A's have each a E. [_,

and the sides about the equal angles are pro-

portional ;
that is, A : B : : C : D ; hence,

(Th. 17, Cor. 2), the two A's are equiangular, and the

acute angles which meet at the extremities of B and (7,

are together equal to one right angle, and the lines B
and G are so placed as to make another right angle;

therefore, also, the extremities of A, B, 0, and D, are in

one right line, (Th. 3, B. I), and that line is the diag-

l\ B
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onal of the parallelogram be. By Th. 31, B. I, the

complementary parallelograms about this diagonal are

equal ; but, one of these parallelograms is B in length,
and in width, and the other is D in length and A in

width; therefore,

B x C = A x B.

Hence the theorem; if four straight lines are in propor-

tion, etc.

Cor. When B =
(7, then A X B = B\ and B is the

mean proportional between A and D. That is, if three

straight lines are in proportion, the rectangle contained

by the first and third lines is equivalent to the square
described on the second line.

THEOREM XX.

Similar triangles are to one another as the squares of their

homologous sides.

Let ABO and DBF be two

similar triangles, and LQ and

MF perpendiculars to the sides

AB andBE respectively. Then
we are to prove that

aABC:aBEF = AB*:BE\
By the similarity of the tri-

angles, we have,

AB :BE = LC : MF
But, AB ; BE = AB : BE
Hence, AB 2

: JJW = AB x LQ : BE x MF.

But, (by Th. 30, B. I), AB x LQ is double the area

of the A ABC, and BE x MF is double the area of the

A BEF.

Therefore, A ABO: ABEFnAB x LQ :BExMF
And, (Th. 6), A ABC: ABEF= AW : BE\
Hence the theorem

;
similar triangles are to one another,

etc.
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The following illustration will enable the learner fully

to comprehend this important theorem, and it will also

serve to impress it upon his memory.

Let abc and ABO represent two equiangular triangles.

Suppose the length of

the side ac to be two

units, and the length
of the corresponding
side A to be three

units.

Now, drawing lines

through the points of

division of the sides ac and A 0, parallel to the other sides

of the triangles, we see that the smaller triangle is com-

posed of four equal triangles, while the larger contains

nine such triangles. That is,

the sides of the triangles are as 2 : 3,

and their areas are as 4 : 9 = 22
: 3'.

THEOREM XXI

Similar polygons may be divided into the same number of

triangles; and to each triangle in one of the polygons there

will be a corresponding triangle in the other polygon, these

triangles being similar and similarly situated.

JjQtABCDUtmd. abcde

be two similar polygons.
Now it is obvious thatwe
can divide each polygon
into as many triangles as

the figure has sides, less

two; and as the polygons have the same number of sides,

the diagonals drawn from the vertices of the homologous
angles will divide them into the same number of tri-

angles.
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Since the polygons are similar, the anglesEAB and cab,

are equal, and

EA : AB : : ea : ab.

Hence the two triangles, EAB and eab, having an angle
in the one equal to an angle in the other, and the sides

about these angles proportional, are equiangular and

similar, and the angles ABE and abe are equal.

But the angles ABO and abc are equal, because the

polygons are similar.

Hence, [_ABO— [_ABE= \__abc
—

[__abe;

that is, [___EBO= [__ebc.

The triangles, EAB and eab, being similar, their ho-

mologous sides give the proportion,

AB : BE : : ab : be; (
1

)

and since the polygons are similar, the sides about the

equal angles B and b are proportional, and we have

AB : BO :: ab : be;

or, BO : AB :: be : ab. (2)

Multiplying proportions (1) and (2), term by term, and

omitting in the result the factorAB common to the terms

of the first couplet, and the factor ab common to the

terms of the second, we have

BO : BE n be i be.

Hence the A's EBO and ebe are equiangular and similar;

and thus we may compare all of the triangles of one

polygon with those like placed in the other.

Hence the theorem
;
similar polygons may be divided^ etc

THEOREM XXII.

The perimeter8 of similar polygons are to one another as

their homologous sides ; and their areas are to one another as

the squares of their homologous sides.

Let ABODE and abode be two similar polygons ; then

we are to prove that AB is to the sum of all the sides
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ofthe polygonABOB, as

ah \% to the sum of all

the sides of the polygon
abed. E

We have the identical

proportion
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Let ABC and def be two triangles having the angles

A and d equal. It is to

be proved that the areas

ABC and def are to each

other as AB.AC is to

de.df.

Conceive the triangle

def placed on the tri-

angle ABC, so that d

shall fall on A, and de on

AB ;
then df will fall on

AC, because the L'si
and d are equal. On AB, lay off Ae, equal to de

;
and

on AC, lay off Af, equal to df, and draw ef The tri-

angle Aef will then be equal to the triangle def Join

B and/.

Now, as triangles having the same altitude are to each

other as their bases, (Th. 16, Cor. 1), we have

Aef : ABf :: Ae : AB
also, ABf : ABC : : Af : AC

Multiplying these proportions together, term by term,

omitting from the result ABf, a factor common to the

terms of the first couplet, we have

Aef : ABC : : Ae . Af : AB . AC
But Aef is equal to def, Ae to de, and Af to df; therefoie,

def : ABC :: de . df : AB . AC
Hence the theorem ; two triangles which have an angle, ttc.

Scholium.— If we suppose that

AB : AC :: de : df

the two triangles will be similar ; and if we multiply the terms ot the

first couplet of this proportion by AC, and the terms of the second

ccmplet by df, we shall have

AB . AC : AC%
: : de^ : dj*

U, AB . AC : de . df :: AC2
: df
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Comparing this with the last proportion in this theorem, and we have,

(Th.6); _ _
def: ABC xx df : AC9

Remark.— This scholium is therefore another demonstration of

Theorem 20, and hence that theorem need not necessarily have been

made a distinct proposition. We require no stronger proof of the cer-

tainty of geometrical truth, than the fact that, however different the

processes by which we arrive at these truths, we are never led into

inconsistencies ; but whenever our conclusions can be compared, they

will harmonize with each other completely, provided our premises are

true and our reasoning logical.

It is hoped that the student will lose no opportunity to exercise

his powers, and test his skill and knowledge, in seeking original

demonstrations of theorems, and in deducing consequences and

conclusions from those already established.

THEOREM XXIV.

If the vertical angle of a triangle be bisected, the bisecting

line will cut the base into segments proportional to the adja-

cent sides of the triangle.

Let ABO be any triangle,

and the vertical angle, 0, be bi- *s1

sected by tbe straight line CD.
Then we are to prove that

AB : BB = AC : OB.

Produce AO to E, making
A

—
D r

OE = OB, and draw EB. The exterior angle A OB, of

the A CEB, is equal to the two angles E, and CBE;
but the angle E = QBE, because OB — OE, and the tri-

angle is isosceles; therefore the angle AOB, the half of
the angle A OB, i3 equal to the angle E, and BO and BE
are parallel, (Cor.2,Th. 7,B. I).

Now, as ABE is a triangle, and OB is parallel to BE,
we have AD : BB = AQ : OE or OB, (Th. 17).
Hence the theorem ; if the vertical angle of a triangle

be bisected, etc.

8
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THEOREM XXV.

If from the right angle of a right-angled triangle, a per

pendicular is drawn to the hypotenuse ;

1. The perpendicular divides the triangle into two similar

triangles, each of which is similar to the whole triangle,

2. The perpendicular is a mean proportional between the

segments of the hypotenuse.

3. The segments of the hypotenuse are in proportion to the

squares on the adjacent sides of the triangle.

4. The sum of the squares on the two sides is equivalent to

the square on the hypotenuse.

Let BAG be a triangle, right an-

gled at A
;
and draw AD perpendicu-

lar to BO.
1. The two A 's, ABO and ABB, B DC

have the common angle, B, and the right angle BAQ =
the right angle BDA ; therefore, the third |_ 's are equal,

and the two A's are similar by Th. 17, Cor. 1. In the

same manner we prove the A ADC similar to the A

ABC; and the two triangles, ABB, ABC, being similar

to the same A ABO, are similar to each other.

2. As similar triangles have the sides about the equal

angles proportional, (Def. 16), we have

BB : AD :: AD : OD;

or, the perpendicular is a mean proportional between the seg-

ments of the hypotenuse.

3. Again, BO j_BA :: BA : BD
hence, BA* - BO.BD (1)

also, BQjJJA : : OA : OD

hence, OA
2 = BOOD (2)

Dividing Eq. (1) by Eq. (2), member by member, wo
obtain

~BA* , BD
~OA

2
""

OD
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which, in the form of a proportion, is

CA* :~BA* :: CD : BD;
that is, the segments of the hypotenuse are proportional to the

squares on the adjacent sides.

4. By the addition of (1) and (2), we have

BJl + CA* m BQ(BD + CD) =BC\
that is, the sum of the squares on the sides about the right

angle is equivalent to the square on the hypotenuse. This ia

another demonstration of Theorem 39, B. I.

Hence the theorem
, if from the right angle of a right*

angled triangle, etc.
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BOOK III.

OF THE CIRCLE, AND THE INVESTIGATION OF THEtt
REMS DEPENDENT ON ITS PROPERTIES.

DEFINITIONS.

1.
* A Curved Line is one whose consecutive parts, how-

ever small, do not lie in the same direction.

2. A Circle is a plane figure bounded by one uniformly
curved line, all of the points of which are at the same
distance from a certain point within, called the center

3. The Circumference of a cir-

cle is the curved line that

bounds it.

4. The Diameter of a circle

is a line passing through the

center, and terminating at both

extremities in the circumfer-

ence. Thus, in the figure, is

the center of the circle, the

curved line ACrBD is the cir-

cumference, and AB is a diameter.

5. The Radius of a circle is a line extending from the

center to any point in the circumference. Thus, CD is

a radius of the circle.

6. An Arc of a circle is any portion of the circum-

ference.

* The first six of the above definitions have been before given among
the general definitions of Geometry, but it was deemed advisable to

reinsert them here.
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7. A Chord of a circle is the line connecting the ex-

tremities of an arc.

8. A Segment of a circle is the portion of the circle on

either side of a chord.

Tims, in the last figure, EGrF is an arc, and EF is a

chord of the circle, and the spaces bounded by the chord

EF, and the two arcs EGrF and EDF, into which it

divides the circumference, are segments.
9. A Tangent to a circle is a line which, meeting the

circumference at any point, will not cut it on being

produced. The point in which the tangent meets the

circumference is called the point of tangency.

10. A Secant to a circle is a line which meets the cir-

cumference in two points, and lies a part within and a

part without the circumference.

11. A Sector of a circle is a portion of the circle included

between any two radii and their intercepted arc.

Thus, in the last figure, the line HL, which meets the

circumference at the point D, but does not cut it, is a

tangent, D being the point of tangency; and the line

MN, which meets the circumference at the points P and

Q, and lies a portion within and a portion without the

circle, is a secant. The area bounded by the arc BD, and

the two radii OB, CD, is a sector of the circle.

12. A Circumscribed Polygon is

one all of whose sides are tangent
to the circumference of the circle

;

and conversely, the circle is then

said to be inscribed in the polygon.
13. An Inscribed Polygon is one

the vertices of whose angles are

all found in the circumference

of the circle
;
and conversely, the circle is then said to be

circumscribed about the polygon.
14. A Regular Polygon is one which is both equiangu-

lar and equilateral.

8*
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The last three definitions are illustrated by the last

figure.

THEOREM I.

Any radius perpendicular to a chord, bisects the chord, and

also the arc of the chord.

Let AB be a chord, the center of

the circle, and OE & radius perpen-
dicular to AB

;
then we are to prove

that AB = BB, and AE = EB.
Since is the center of the circle,

AC— BO, CB is common to the two

A's AOB and BOB, and the angles
at B are right angles ;

therefore the two A's ABO and

BBO are equal, and AB = BB, which proves the first

part of the theorem.

Now, as AB — BB, and BE is common to the two

spaces, ABE and BBE, and the angles at B are right

angles, if we conceive the sector OBE turned over and

placed on CAE, OE retaining its position, the point B
will fall on the point A, because AB = BB and AO =
BO; then the arc BE will fall on the arc AE; otherwise

there would be points in one or the other arc unequally
distant from the center, which is impossible ; therefore,

the arc AE — the arc EB, which proves the second part
of the theorem.

Hence the theorem.

Cor. The center of the circle, the middle point of

the chord AB, and of the subtended arc AEB, are

three points in the same straight line perpendicular to

the chord at its middle point. Now as but one perpen-
dicular can be drawn to a line from a given point in that

line, it follows :

1st. That the radius drawn to the middle point 3f

any arc bisects, and is perpendicular to, the chord of

the arc.
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2d. That the perpendicular to the cl ord at its middle

point passes through the center of the circle and the

middle of the subtended arc.

THEOREM II.

Equal angles at the center of a circle are subtended by

equal chords.

Let the angle ACE = the angle

ECB; then the two isosceles triangles,

ACE, and ECB, are equal in all re-

spects, and AE = EB.
Hence the theorem.

THEOREM III.

In the same circle, or in equal circles, equal chords are

equally distantfrom the center.

Let AB and EF be equal chords,
and C the center of the circle. From
C, draw CG and CH, perpendicular
to the respective chords. These

perpendiculars will bisect the chords,

(Th. 1), and we shall haveAG= EH.
"We are now to prove that CG = CH.

Since the A's ECH and AQG are right-angled, we
have, (Th. 39, B. I),

EH2

+~WC
7

=-EC2

and, AG 2 + GO2 = 'AC
2

.

By subtracting these equations, member from mem-
ber, we find that

EH2 — AG2

+ 7W2 — ~GC
2

=~EC2 — AC* (1)

But the chords are equal by hypothesis, hence their

halves, EH and AG, are equal; also EC= AC, being
radii of the circle. Wherefore,
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EH 2 — AG 2 «
and, W — ~A02 - 0.

These values in Equation (
1

) reduce it to

HC? - GO 2 =
or, H0 2 =G0 2

and, #(7 - #(7.

Hence the theorem.

(7<?r. Under all circumstances we have

EH 2 + HQ2 = Z#2 + #tf
2

,

because the sum of the squares in either member of the

equation is equivalent to the square of the radius of the

circle.

Now, if we suppose HO greater than GO, then will

HQ 2 be greater than GO 2
. Let the difference of these

squares be represented by d.

Subtracting GO 2
from both members of the above

equation, we have

EH 2+d=AG2

whence, ~AG2>EH2

,
and AG> EH.

Therefore, AB, the double of AG, is greater than EF,
the double of EH; that is, of two chords in the same or

equal circles, the one nearer the center is the greater.

The equation, EH2 + HO 2 = AG 2

-f ~G0
2

, being true,

whatever be the position of the chords, we may suppose
GO to have any value between and A 0, the radius of

the circle.

When GO becomes zero, the equation reduces to

EH2 + ~H0 2 - AG* - B2

;

that is, under this supposition, AG coincides with A 0,

and AB becomes the diameter of the circle, the greatest

chord that can he drawn in it.
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THEOREM IV

A line tangent to the circumference of a circle is at right

angles with the radius drawn to the point of contact.

Let A be a line tangent to the circle

at the point B, and draw the radius, EB,
and the lines, AE and OE.

Now, we are to prove that EB is per-

pendicular to AC. Because B is the

only point in the line A which meets

the circle, (Def. 9, B. Ill), any other line,

asAE or CE, must be greater than EB ;

therefore, EB is the shortest line that can be drawn from

the point E to the line A 0; and EB is the perpendicu-
lar to AC, (Th. 23, B. I).

Hence the theorem.

THEOREM V.

In the same circle, or in equal circles, equal chords subtend

or stand on equal portions of the circumference.

Conceive two equal circles, and two equal chords drawn

within them. Then, conceive one circle taken up and

placed upon the other, center upon center, in such a po-

sition that the two equal chords will fall on, and exactly

coincide with, each other; the circles must also coin-

ciie, because they are equal; and the two arcs of the two

circles on either side of the equal chords must also coin-

cide, or the circles could not coincide; and magnitudes
which coincide, or exactly fill the same space, are in all

respects equal, (Ax. 10).

Hence the theorem.
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THEOREM VI.

Through three given points, not in the same straight line,

one circumference can be made to pass, and but one.

Let A, B, and be three given

points, not in the same straight

line, and draw the lines AB and

BO. If a circumference is made

to pass through the two points A
and B, the lineAB will be a chord

to such a circle
;
and if a chord is

bisected by a line at right angles,

the bisecting line will pass through
the center of the circle, (Cor., Th. 1) ; therefore, if we
bisect the line AB, and draw DF, perpendicular to AB,
at the point of bisection, any circumference that can

pass through the points, A and B, must have its center

somewhere in the line DF. And if we draw FIG- at

right angles to BO at its middle point, any circumference

that can pass through the points B and must have its

center somewhere in the line EO. Now, if the two lines,

DF and EGr, meet in a common point, that point will be

a center, about which a circumference can be drawn to

pass through the three points, A, B, and 0, and DF and

EO will meet in every case, unless they are parallel ;
but

they are not parallel, for if they were, it would follow

(Th. 5, B. I) that, since DF is intersected at right angles

by the line AB, it must also be intersected at right angles

by the line BO, having a direction different from that of

AB ;
which is impossible, (Th. 7, B. I).

Therefore the two lines will meet ; and, with the point

H, at which they meet, as a center, and HB— HA = HQ
as a radius, one circumference, and but one, can be made

to pass through the three given points.

Hence the theorem.
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THEOREM VII.

If two rircles touch each other, either internally or exter-

nally, the two centers and the point of contact will be in one

right line.

Let two circles touch each

other internally, as represented
at A, and conceive AB to be a

tangent at the common point A.

Now, if a line, perpendicular to

AB, be drawn from the point

A, it must pass through the

center of each circle, (Th. 4) ;

and as but one perpendicular can be drawn to a line at a

given point in it, A, 0, and B, the point of contact and

the two centers must be in one and the same line.

Next, let two circles touch each other externally, and

from the point of contact conceive the common tangent,

AB, to be drawn.

Then a line, A 0, perpendicular to AB, will pass

through the center of one circle, (Th. 4), and a per-

pendicular, AB, from the same point, A, will pass

through the center of the other circle
; hence, BAG and

BAB are together equal to two right angles ;
therefore

CAB is one continued straight line, (Th. 3, B. I).

Cor. "When two circles touch each other internally, the

distance between their centers is equal to the difference

of their radii
;
and when they touch each other extern-

ally, the distance between their centers is equal to the

sum of their radii.

THEOREM VIII.

An angle at the circumference of any circle is measured by

one half the arj on which it stands.

In this work it is taken as an axiom that any angle
whose vertex is at the center of a circle, is measured by
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the arc on which it stands
;
and we now proceed to prove

thatwhen the arcs are equal, the angle at the circumference

is equal to one half the angle at the center.

LetACB be an angle at the center,

and D an angle at the circumference,
and at first suppose D in a line with

AC. We are now to prove that the

angle ACB is double the angle D.

The A DCB is an isosceles triangle,

because CD = CB ;
and its exterior

angle, ACB, is equal to the two interior angles, D, and

CBD, (Th. 12, B. I), and since these two angles are equal
to each other, the angle ACB is double the angle at

D. But ACB is measured by the arc AB
;
therefore the

angle D is measured by one half the arc AB.

Next, suppose D not in a line with

AC, but at any point in the circum-

ference, except on AB ; produce DC
to E.

Now, by the first part of this

theorem,
the angle ECB = 2EDB,
also, ECA = 2EDA,
by subtraction, ACB = 2ADB.
But ACB is measured by the arc AB; therefore ADB

or the angle D, is measured by one half of the same arc

Hence the theorem.

THEOREM IX.

An angle in a semicircle is a right angle ; an angle in a

(segment greater than a semicircle is less than a right angle ;

and an angle in a segment less than a semicircle is greater

than a right angle.

If the angle ACB is in a semicircle, the opposite seg-

ment, ADB, on which it stands, is also a semicircle
;
and

the angle ACB is measured by one half the arc ADB



BOOK III. b«

(Th. 8) ;
that is, one half of 180°, or 90°, which is the

measure of a right angle.

If the angle ACB is in a segment

greater than a semicircle, then the

opposite segment is less than a semi-

circle, and the measure of the angle
is less than one half of 180°, or less

than a right angle. If the angle

ACB is in a segment less than a

semicircle, then the opposite segment, ABB, on whiefc

the angle stands, is greater than a semicircle, and its half

is greater than 90°; and, consequently, the angle is

greater than a right angle.

Hence the theorem.

Cor. Angles at the circumference,

and standing on the same arc of a

circle, are equal to one another ;
for

all angles, as BAG, BBC, BBC, are

equal, because each is measured by
one half of the arc BC. Also, if the

angle BEC is equal to CEG-, then

the arcs Bd and CG- are equal, be-

cause their halves are the measures of equal angles.

THEOREM X.

The sum of two opposite angles of any quadrilateral in*

scribed in a circle, is equal to two right angles.

Let ACBD represent any quadri-
lateral inscribed in a circle. The

angle ACB has for its measure, one

half of the arc ABB, and the angle
ABB has for its measure, one half of

the arc ACB; therefore, by addition,
the sum of the two opposite angles at

C and B, are together measured by
one half of the whole circumference, or by 180 degrees,
«= two right angles. Hence the theorem
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THEOREM XI.

An angle formed by a tangent and a chord is measured ty

one half of the intercepted arc.

Let AB be a tangent, and AD a

chord, and A the point of contact ;

then we are to prove that the angle

BAD is measured by one half of the

arc AED.
From A draw the radius AC; and

from the center, C, draw CE per-

pendicular to AD.
The [_BAD + [__DAC= 90°, (Th. 4).

Also, [_C+l_DAC= 90°, (Cor. 4, Th. 12, B. 1),

Therefore, by subtraction, BAD— (7=0;

by transposition, the angle BAD = C.

But the angle C, at the center of the circle, is measured

by the arc AE, the half of AED
; therefore, the equal

angle, BAD, is also measured by the arc AE, the half

of AED.
Hence the theorem.

THEOREM XII.

An angle formed by a tangent and a chord, is equal to an

angle in the opposite segment of the circle.

Let AB be a tangent, and AD a

chord, and from the point of contact,

A, draw any angles, as AOD, and

AED, in the segments. Then we are

to prove that
[__ BAD = [__

A CD, and

L GAD = L AED-
By Th. 11, the angle BAD is meas-

ured by one half the arc AED
;
and

as the angle ACD is measured by one half of the same

arc, (Th. 8), we have |_ BAD = [_ ACD.
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Again, as AEBO is a quadrilateral, inscribed in a

circle, the sum of the opposite angles,

AOB + AEB - 2 right angles. (Th. 10).

Also, the sum of the angles

BAD + BAG = 2 right angles. (Th. 1, B. I).

By subtraction (and observing that BAB has just been

proved equal to AOB), we have,

AEB — BAG = 0.

Or, by transposition, AEB = BAG*

Hence the theorem.

THEOREM XIII.

Arcs of the circumference of a circle intercepted by paral-

lel chords, or by a tangent and a parallel chord, are equal.

Let AB and OB be parallel chords,

and draw the diagonal, AB ; now, be-

cause AB and CB are parallel, the

angle BAB - the angle ABO (Th. 6, B.

I) ;
but the angle BAB has for its meas-

ure, one half of the arc BB\ and the

angle ABO has for its measure, one half of the arc AO,
(Th. 8) ;

and because the angles are equal, the arcs are

equal ;
that is, the arc BB = the arc A 0.

Next, let EF be a tangent, parallel to a chord, OB, and
from the point of contact, G, draw GB.

Since EF and OB are parallel, the angle OBG = the

angle BGF. But the angle OBGr has for its measure,
one-half of the arc 00-, (Th. 8) ;

and the angle BGF
has for its measure, one half of the arc GB, (Th. 11) ;

therefore, these measures of equals must be equal ;
that

is, the arc CG=the arc GD.

Hence, the theorem.
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THEOREM XIV.

When two chords intersect each other within a circle, the

angle thus formed is measured by one half the sum of the twa

intercepted arcs.

Let AB and CD intersect each

other within the circle, forming the

two angles, E and E f

,
with their

equal vertical angles.

Then, we are to prove that the

angle E is measured by one half the

sum of the arcs AC and BD; and

the angle E' is measured by one half the sum of the

arcs AD and CB.

First, draw AF parallel to CD, and FD will be equal
to AC, (Th. 13); then, by reason of the parallels, [__ BAF
=

|__ E. But the angle BAF is measured by one half

of the arc BDF; that is, one half of the arc BD plus one

half of the arc AC.

Now, as the sum of the angles E and E f
is equal to

two right angles, that sum is measured by one half the

whole circumference.

But the angle E, alone, as we have just proved, is

measured by one half the sum of the arcs BD and AC;
therefore, the other angle, E', is measured by one half

the sum of the other parts of the circumference,

AD + CB.

Hence the theorem.

THEOREM XV.

When two secants intersect, or meet each other without a

circle, the angle thus formed is measured by one half the dif

ference of the intercepted arcs. ^
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Let DE and BE be two secants

meeting atE
;
and drawAF parallel to

CD. Then, by reason of the parallels,

the angle E, made by the intersection

of the two secants, is equal to the

angle BAF. But the angle BAF is

measured by one half the arc BF;
that is, by one half the difference be-

tween the arcs BD and A C.

Hence the theorem.

THEOREM XVI.

The angle formed by a secant and a tangent is measured

by one half the difference of the intercepted arcs.

Let BQ be a secant, and CD a tan-

gent, meeting at C. We are to prove
that the angle formed at C, is meas-

ured by one half the difference of the

arcs BD and DA.
From A, draw AE parallel to CD ;

then the arc AD = the arc DE;
BD --DE = BE; and the [__BAE =
L O. But the angleBAE is measured

by one half the arc BE, (Th. 8,) that is, by one half

the difference between the arcs BD and AD; there-

fore, the equal angle, C, is measured by one half the

arc BE.

Hence the theorem.

THEOREM XVII.

When two chords intersect each other in a circle, the rect-

angle contained by the segments of the one, will be equivahrt
to the rectangle contained by the segments of the other.

9*
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Let AB and CB be two chords inter-

Becting each other in E. Then we are

to prove that the rectangle AE x EB=
the rectangle CE X EB.
Draw the lines AB and. CB, forming

the two triangles AEB and CEB. The

angles B and B are equal, because they
are each measured by one half the arc, AG. Also the

angles A and C are equal, because each is measured by
one half the arc, BB ;

and LAEB =
|__ CEB, because

they are vertical angles ; hence, the triangles, AEB and

CEB, are equiangular and similar. But equiangular tri-

angles have their sides about the equal angles propor-

tional, (Cor. 1, Th. 17, B. II); therefore, AE and EB,
about the angle E, are proportional to CE and EB, about

the same or equal angle.

That is, AE : EB :: CE : EB;
Or, (Th. 19, B. II), AE x EB = CE x EB.

Hence the theorem.

Cor. When one chord is a diameter, and the other at right

angles to it, the rectangle contained by the segments of the

diameter is equal to the square of one half the other chord ;

or one half of the bisected chord is a mean proportional be-

tween the segments of the diameter.

For, ABxBB*=FBx BE. But, if

AB passes through the center, C, at

right angles to FE, then FB = BE
(Th. 1) ;

and in the place of FB, write

its equal, BE, in the last equation, and

we have

ABxBB = EE\
or, (Th. 3, B II), AB : BE : : BE : BB.

Put, BE = x, CB == y, and CE = B, the radius of the

circle.
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Then AD ~ B -
-y, and DB - B -f #. With this nota-

tion,
AD x DB = DE %

becomes, (B -y)(R + y) = x*

or, B %— y
2 = x*

or, B 2 = x*+y*
That is, fA« square of the hypotenuse of the right-angled

triangle, DCE, is equal to the sum of the squares of the other

two sic

THEOREM XVIII.

Iffrom a point without a cirde, a tangent line be drawn to

the circumference, and also any secant line terminating in tht-

concave arc, the square of the tangent will be equivalent to b*.

rectangle contained by the whole secant and its external sea

ment.

Let A be a point without the

circle DUG, and let AD be a

tangent and AE any secant line.

Then we are to prove that

AOxAE = AD\
In the two triangles, ADE and

ADC, the anglesADO andAED
are equal, since each is meas-

ured by one half of the same

arc, DO; the angle A is com-

mon to the two triangles ;
their

third angles are therefore equal, and the triangles are

equiangular and similar.

Their homologous sides give the proportion

AE : AD i :_AZ) : AC
whence, AE xAC= AD2

Hence the theorem.

Cor. If AE and AF are two secant lines drawn from

%\ e same point without the circumference, we shall have
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AOx AF=AB*
and, ABxAF^AB*
hence, AOx AF = AB x AF,
which, in the form of a proportion, gives

AC : AF ::AB : AF.

That is, the secants are reciprocally proportional to their ex-

ternal segments.

Scholium.—By means of this theorem we can determine the diam-

eter of a circle, when we know the length of a tangent drawn from a

point without, and the external segment of the secant, which, drawn

from the same point, pasees through the center of the circle.

Let Am be a secant passing through the center, and

suppose the tangent AB to he 20, and the external seg-

ment, An, of the secant to be 2. Then, if D denote the

diameter, we shall have

im=2+i),
whence, Am x An = 2 (2 + B) = 4 -f 2B = (20)

2 = 400,

22) = 396, and B = 198.

Ifiw, the height of a mountain on the earth, and AB,
the distance of the visible sea horizon, be given, we may
determine the diameter of the earth.

For example ;
the perpendicular height of a mountain

on the island of Teneriffe is about 3 miles, and its summit

can be seen from ships when they are known to be 154

or 155 miles distant
;
what then is the diameter of the

earth ?

Designate, as before, the diameter by B. Then A m «
3 + 2), and Am x An = 9 + SB. AB = 154. 5

; hence,

9 + 32) = (154. 5)
2 = 23870. 25, from which we find 2) =

7953.75, which differs but little from the true diameter*

of the earth.

One source of error, in this mode of computing the

diameter of the earth, is atmospheric refraction, the ex

planation of which does not belong here.
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THEOREM XIX.

If a circle be described about a triangle, the rectangle con-

tained by two sides of the triangle is equivalent to the rectangle

contained by the perpendicular let fall on the third side, and

the diameter of the circumscribing circle.

Let ABO be a triangle, AC and

OB, the side3, OB the perpendicular
let fall on the base AB, and OB the

diameter of the circumscribing circle.

Then we are to prove that

AO x OB= OEx OB.

The two A's, AOB and OEB, are

equiangular, because \__A=\__E, both

being measured by the half of the arc OB; also, ABO is

a right angle, and is equal to OBB, an angle in a semi-

circle, and therefore a right angle ; hence, the third angle,

AOB = [_BOE, (Th. 12, Cor. 2, B. I). Therefore, (Cor. 1,

Th. 17, B. II),

AO x OB :: OE : OB

and, AOxBO=OEx OB.

Hence the theorem
; if a circle, etc.

Oor. The continued product of three sides of a triangle is

equal to twice the area of the triangle into the diameter of its

tircumscribing circle.

Multiplying both members of the last equation by A B,

we have,

AOx BOxAB=OEx {AB x OB).

But OB is the diameter of the circle, and (AB x OB)
«= twice the area of the triangle ;

Therefore, AOx OB x AB= diameter multiplied

by twice the area of the triangle.
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THEOREM XX.

The square of a line bisecting any angle of a triangle, to*

gether with the rectangle of the segments into which it cuts the

opposite side, is equivalent to the rectangle of the two sides

including the bisected angle.

Let ABO be a triangle, and CD a

Line bisecting the angle C. Then

we are to prove that

CD* + (AD x DB) = ACx CB.

The two A's, ACE and CDB, are

equiangular, because the angles E
and B are equal, both being in the

same segment, and the
[__ ACE = BCD, by hypothesis.

Therefore, (Th. 17, Cor. 1, B. H),

AC : CE :: CD : CB.

But it is obvious that CE = CD -f DE, and by substi-

tuting this value of CE, in the proportion, we have,
AC i CD + DE :: CD : CB.

By multiplying extremes and means,
CD

2

+ (DE x CD) = ACx CB.

But by (Th. 17),

DE x CD = ADx DB,
and substituting, we have,

HB* + (AD x DB) = ACx CB.

Hence the theorem.

THEOREM XXI.

The rectangle contained by the two diagonals of any quad-

rilateral inscribed in a circle, is equivalent to the sum of the

two rectangles contained by the opposite sides of the quadri-

lateral.

Let ABCD be a quadrilateral inscribed in. a circle;

then we are to prove that

ACx BD = (AB x DC) + (AD x BC).
From 0, draw CE, making the angle DOE equal to
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the angle AOB ;
and as the angle BAO is equal to th*

angle ODE, both being in the same seg-

ment, therefore, the two triangles, BEO
and ABO, are equiangular, and we have

(Th. IT, Cor. 1, B. II),

AB : AC :: BE : BO (1)

The two A's, ABO and BEO, are

equiangular; for the [_BAO= \_EBO,
both being in the same segment; and the L BOA —
\_EOB, for BOE= BOA; to each of these add the ai gle

EOA, smdL BOA = EOB; therefore, (Th. 17, Cor. 1,

B.II),
AB : AO :: BE : BO (2).

By multiplying the extremes and means in proportions

(1) and (2), and adding the resulting equations, we have,

(AB x BO) + (AB x BO) = (BE + BE) x AO.

But, BE + BE = BB; therefore,

(AB x 2)(7) -f (AB x 5(7) = i(Jx BB,

Oor. When two adjacent sides of the quadrilateral are

equal, as AB and BO, then the resulting equation is,

(AB x BO) + (AB x AB) = AO x 5D;
or, -15 x (2)<7 -f AB) = AO x BB;
or, AB : AO : : BB : BO + AB.

That is, one of the two equal sides of the quadrilateral

is to the adjoining diagonal, as the transverse diagonal is to

the sum of the two unequal sides.

THEOREM XXII.

If two chords intersect each other at right angles in a cir-

cle, the sum of the squares of the four segments thus formed

is equivalent to the square of the diameter of the circle.

Let AB and OB be two chords, intersecting eacb

other at right angles. Draw BE parallel to EB, and

draw BE and AF. Now, we are to prove that

IE1 +^F +~W %

f EB
2

=~AF\
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As BF is parallel to ED, ABF is a

right angle, and therefore AF is a diam-

eter, (Th. 9). Also, because BF is

parallel to CD, OB= DF, (Th. 13).

Because CEB is a right angle,

CE 2

+ EB
2 =CB2 = DF\

Because AED is a right angle,
• AE 2

+~ED
2 = AD\

Adding these two equations, we have,

W 2

+ EB
2

+ AE 2

+~ED
2 = DF2

+ ~AD\

But, as AF is a diameter, and ADF a right ang\e,

(Th. 9), _ _
DT+AD 2 = AF2

;

therefore, CE 2

+ EB
2

-f AE 2

+ Ji)
2 = ZF2

.

Hence the theorem.

Scholium.— If two chords intersect each other at right angles, in a

circle, and their opposite extremities be joined, the two chords thus

formed may make two sides of a right-angled triangle, of which tho

diameter of the circle is the hypotenuse.

For, AD is one of these chords, and CB is the other
;
and we have

shown that CB = DF; and AD and DF are two sides of a right-

angled triangle, of which AF is the hypotenuse ; therefore, AD and

CB may be considered the two sides of .a right-angled triangle, and

AF its hypotenuse.

THEOREM XXIII.

If two secants intersect each other at right angles, the sum

of their squares, increased by the sum of the squares of the

two segments without the circle, will be equivalent to the square

of the diameter of the circle.

Let AE and ED be two secants in-

tersecting at right angles at the point

E. From B, draw BF parallel to CD,
and draw AF and AD. Now we are to

prove that

f3M ED2
-r EB2 +~Wf T IF.
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Because BF is parallel to CD, ABF is a light angle,

and consequently AF is a diameter, and BC= BF; and

because AF is a diameter, J.2>^ is a right angle. As
ABB is a right angle,

AF'+FD^AD'
Also, FB'+EC^BC^DF2

Byadditio^XI^^SV^'+^^ZS'+SF^AF1

Hence the theorem.

THEOREM XXIV.

If perpendiculars be drawn bisecting the three sides of a

triangle, they will, when sufficiently produced, meet in a com-

mon point.

The three angular points of a triangle are not in the

same straight line; consequently one circumference,

and but one, may be made to pass through them.

Conceive a triangle to be thus circumscribed. The
sides of the triangle then become chords of the circum-

scribing circle. Now if these sides be bisected, and at the

points of bisection perpendiculars be drawn to the sides,

each of these perpendiculars will pass through the center

of the circle (Th. 1, Cor.) ;
and the perpendiculars will

therefore meet in a common point.

Hence the theorem.

THEOREM XXV.

The sums of the opposite sides of a quadrilateral circum-

scribing a circle are equal.

Let ABOB be a quadrilateral circumscribed about a

circle, whose center is 0. Then we are to prove that

AB + BC=AB + BC.

From the center of the circle draw OF and OF to

the points of contact of the sides AB and BO. Then,
10
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the two right-angled triangles, OEB and OFB, are equal,

because they have the hypotenuse
OB common, and the side OF=
OE; therefore, BE = BF, (Cor.,

Th. 39, B. I).

In like manner we can prove
that

AE=AH, CF= Ca, nn&DG=DK
Now, taking the equation BE=

BF, and adding to its first mem-
ber CG-, and to its second the

equal line CF. we have,

BE+ CG = BF+ OF (1)

The equation AE=AH, by adding to its first member

DCr, and to the second the equal line, DH, gives

AE+DG=AH+DH (2)

By the addition of (1) and (2) ?
we find that

BE + AE+CG + DG = BF + CF+AK+DIT.
That is, AB + CD=BC+ AD.

Hence the theorem.
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BOOK IV.

PROBLEMS

In this section, we have, in most instances, merely
shown the construction of the prohlem, and referred to

the theorem or theorems that the student may use, to

prove that the object is attained by the construction.

In obscure and difficult problems, however, we have

gone through the demonstration as though it were a

theorem.

PROBLEM I.

To bisect a given finite straight line.

Let AB be the given line, and from

its extremities, A and B, with any
radius greater than one half of AB,
(Postulate 3), describe arcs, cutting

A—
each other in n and m. Draw the line

nm
;
and 0, where it cuts AB, will be

the middle of the given line.

Proof, (B. I, Th. 18, Sch. 2).

PROBLEM II.

To bisect a given angle.

Let ABO be the given angle. With any
radius, and B as a center, describe the arc

AC. From A and 0, as centers, with a
radius greater than one half of AC, de-

scribe arcs, intersecting in n; join B and n;
the joining line will bisect the given angle.

Proof, (Th. 21, B. I).

X

X
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Proof,

X-tf

PROBLEM III.

From a given point in a given line, to draw a perpendicular

to that line.

Let AB be the given line, and

the given point. Take n and m,

at equal distances on opposite sides

of 0; and with the points m and

n, as centers, and any radius

greater than nO or mO, describe

arcs cutting each other in & Draw

SO, and it will be the perpendicular required.

(B. I, Th. 18, Sch. 2).

The following is another method,
which is preferable, when the given

point, 0, is at or near the end of the

line.

Take any point, 0, which is mani-

festly one side of the perpendicular,
as a center, and with 00 as a radius, describe a circum-

ference, cutting AB in m and 0. Draw mn through the

points m and 0, and meeting the arc again in n
;
mn is

then a diameter to the circle. Draw On, and it will be

the perpendicular required. Proof, (Th. 9, B. III).

PROBLEM IV.

From a given point without a line, to draw a 'perpendicular

to that line.

Let AB be the given line, and

the given point. From draw any

oblique line, as On. Find the mid-

dle point of On by Problem 1, and
with that point, as a center, describe

a semicircle, having On as a diam-

eter. From m, where this semi-cir-

cumference cuts AB, draw Om, and it will be the pcrpcn
dicular required. Proof, (Th. 9, B. III).
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PROBLEM V.

At a given point in a line, to construct an angle equal to

a given angle.

Let A be the point given in the line

AB, and DOE the given angle.

With as a center, and any radius,

OE, draw the are ED.
With i as a center, and the radius

AF=OE, describe an indefinite arc; and

with J7
as a center, and FCr as a radius,

equal to ED, describe an arc, cutting the

other arc in Q-, and draw A G\ QAF will be the angle

required. Proof, (Th. 2, B. III).

PROBLEM VI.

From a given point, to draw a line parallel to a given line.

Let A be the given point, and BO the

given line. Draw A 0, making an angle,

AOB; and from the given point, A, in

the line A 0, draw the angle OAD m
AOB, by Problem 5.

Since AD and BO make the same angle with A 0, they

are, therefore, parallel, (B. I, Th. 7, Cor. 1).

PROBLEM VII.

To divide a given line into any number of equal parte.

Let AB represent the given

line, and let it be required to di-

vide it into any number of equal

parts, say £ve. Prom one end of

the line A, draw AD, indefinite

in both length and position. Take

any convenient distance in the di-

10* h
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viders, as Aa, and set it off on the line AD, thus making
the parts Aa, ab, be, etc., equal. Through the last point,

e, draw EB, and through the points a, b, c, and d, draw

parallels to eB, by Problem 6
; these parallels will divide

the line a3 required. Proof, (Th. 17, Book II).

PROBLEM VIII.

To find a third proportional to two given lines.

LetAB andA be any two lines.

Place them at any angle, and draw

OB. On the greater line, AB, take

AD mm AC, and through D, draw

DE parallel to BO', AE is the third

proportional required.

Proof, (Th. 17, B. II).

PROBLEM IX,

To find a fourth proportional to three given lines.

L^t AB, AC, AD, represent the

ihrca given lines. Place the first

two at any angle, as BAO, and draw

BO On AB place AD, and from

the point D, draw DE parallel to

BO, by Problem 6 ; AE will be the

fourth proportional required.

Proof, (Th. 17, B. H).

PROBLEM X.

Tt find the middle, m mean proportional, between two given

lines
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Place AB and BC in one right

jne, and on A C, as a diameter, de-

scribe a semicircle, (Postulate 3),

and from the point B, draw BD at

right angles to AC, (Problem 3);

BD is the mean proportional re-

quired.

Proof, (B. m, Th. 17, Cor.).

PROBLEM XI.

To find the center of a given circle.

Draw any two chords in the given cir-

cle, as AB and CD, and from the middle

points, m and n, draw perpendiculars to

AB and CD ; the point at which these

two perpendiculars intersect will be the

center of the circle.

Proof, (B. m, Th. 1, Cor.).

PROBLEM XII.

To draw a tangent to a given circle, from a given
either in or without the circumference of the circle*

When the given point is in the cir-

cumference, as A, draw the radius A C,

and from the point A, draw AB per-

pendicular to AC; AB is the tangent

required.

Proof, (Th. 4, B. III).

When the given point is without

the circle, as A, draw AC to the

center of the circle
;
on A C, as a

diameter, describe a semicircle
; and

from B, where the semi-ciruumfer-

ence cuts the given circumference,

draw AB, and it will be tangent to the circle.

Proof, (Th. 9, B. Ill), and, (Th. 4, B. III).

point,
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PROBLEM XIII.

On a given line, to describe a segment of a circle, that shall

contain an angle equal to a given angle.

Let AB be the given

line, and the given

angle. At the ends of

the given line, form angles

DAB, DBA, each equal
to the given angle, C.

Then draw AH and BE
perpendiculars to AD and BD

;
and with E as a center,

and EA, or EB, as a radius, describe a circle; then AFB
will be the segment required, as any angle F, made in

it, will be equal to the given angle, 0.

Proof, (Th. 11, B. Ill), and (Th. 8, B. III).

PROBLEM XIV.

From any given circle to cut a segment, that shall contain

a given angle.

Let be the given angle. Take

any point, as A, in the circumfer-

ence, and from that point draw the

tangent AB ;
and from the point

A, in the line AB, construct the

angle BAD = 0, (Problem 5), and O
AED is the segment required.

Proof, (Th. 11, B. HI), and (Th. 8, B. HI).

PROBLEM XV.

To construct an equilateral triangle on a given straight line.

Let AB be the given line; from

the extremities A and B, as centers,

with a radius equal to AB, describe arcs

cutting each other at 0. From 0, the

point of intersection, draw QA and CB;
ABO will be the triangle required.

The construction is a sufficient demonstration. Or, (Ax. 1\
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PROBLEM XVI.

To construct a triangle, having its three sides equal to three

jiven lines, any two of which shall be greater than the third.

LetAB, OB, and EF, represent the E p

three lines. Take any one of them, as c D

AB, to be one side of the triangle. From

B, as a center, with a radius equal to OB,
describe an arc

;
and from A, as a center,

with a radius equal to EF, describe an-

other arc, cutting the former in n. Draw
An and Bn, and AnB will be the A re-

quired. Proof, (Ax. 1).

PROBLEM XVII.

To describe a square on a given line.

Let AB be the given line
;
and from the

extremities, A and B, drawA and BB per- 9

pendicular to AB. (Problem 3.)

From A, as a center, with AB as radius,

strike an arc across the perpendicular at 0; i

and from draw OB parallel to AB
; AOBB

is the square required. Proof, (Th. 26, B. I).

PROBLEM XVIII.

To construct a rectangle, or a parallelogram, whose adia

.ent sides are equal to two given lines.

Let AB and A be the two given A c
lines. From the extremities of one A n

line, draw perpendiculars to that line, as in the last prob-

lem; and from these perpendiculars, cut off portions

equal to the other line
; and, by a parallel, complete the

figure.
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When the figure is to be a parallelogram, with oblique

angles, describe the angles by Problem 5. Proof, (Th

26, B. I).

PROBLEM XIX.

To describe a rectangle that shall be equivalent to a given

square, and have a side equal to a given line.

LetAB be a side of the given square, c D
and CD one side of the required rect- A B

angle. E p
Find the third proportional, FF, to CD and AB, (Prob-

lem 8). Then we shall have

CD : AB : : AB : FF,

Construct a rectangle with the two given lines, CD
and FF, (Problem 18), and it will be equal to the given

square, (Th. 3, B. II).

PROBLEM XX.

To construct a square that shall be equivalent to the differ

ence of two given squares.

Let A represent a side of the greater of two given

squares, and B a side of the less square.

On A, as a diameter, describe a

semicircle, and from one extremity,

n, as a center, with a radius equal to

B, describe an arc. and, from the

point where it cuts the circumference,
—-—

draw mp and np ; mp is the side of

a square, which, when constructed,

(Problem 17), will be equal to the difference of the two

given squares. Proof (Th. 9, B. Ill, and Th. 39, B. I.)

To construct a square equivalent to the sum of two

given squares, we have only to draw through any point

two lines at right angles, and lay off on one a distance

equal to the side of one of the squares, and on the other
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a distance equal to the side of the other. The straight

line connecting the extremities of these lines will be the

side of the required square, (Th. 39, B. I).

PROBLEM XXI.

To divide a given line into two parts, which shall be in the

ratic of two other given lines.

M^

NH

Let AB be the line A —~<B

to be divided, and M
and N the lines hav-

ing the ratio of the

required parts ofAB.
From the extremity
A draw AB, making
any angle with AB,
and take AC = M,
and OB = N. Join

the points B and B
by a straight line,

and through (7 draw

CG parallel to BB.
Then will the point G divide the line AB into pa„U

having the required ratio. (Proof, Th. 17, B. II).

Or, having drawn AB, lay off A = M, and through
B draw B V parallel to AB, making it equal to N, and

join and Vbj a line cutting AB in the point G.

Then the two triangles AOG and GrBV are equiangu-
lar and similar, and their homologous sides give tho

proportion,

AG : GB :: AC : BV :: M : if

The line AB is therefore divided, at the point G, into

parts which are in the ratio of the lines M and JV1



l;*0 GEOMETRY.
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PROBLEM XXII.

To divide a given line into any number of parts, having to

each other the ratios of other given lines*

Let AB be the given M»-

line to be divided, and Nl

M, It, P, etc., the lines

to which the parts of

AB are to be propor-
tional.

Through the point A
draw an indefinite line, making, with AB, any conve-

nient angle, and on this line lay off from A the lines M,

N, P, etc., successively. Join the extremity of the last

line to the point B by a straight line, parallel to which

draw other lines through the points of division of the

indefinite line, and they will divide the line AB at the

points 0, D, etc., into the required parts. (Proof, Th. 17,

B. II).

PROBLEM XXIII.

To construct a square that shall be to a given square, as a

line, M, to a line, N.

Place M and N in a line, and

on the sum describe a semicir-

cle. From the point where the

two lines meet, draw a perpen-
dicular to meet the circumfer-

ence in A. Draw Am and An,
and produce them indefinitely. On An or An produced,
take AG= to the side of the given square ;

and from C,
draw CB parallel to mn ; AB is a side of the required

square.

For,

Also,

Am An*
AnAm*

Therefore, ~A& :A0
2 ::M

AB2

: AC\ (Th. 17, B. II).M :JST, (Th.25,B.II).

JST, (Th. 6, B. II).
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PROBLEM XXIV.

To cut a line into extreme and mean ratio ; that is, sj that

the whole line shall be to the greater part, as that greater part

is to the less.

Remark.— The geometrical solution of this problem is not imme-

diately apparent, but it is at once suggested by the form of the equa-

tion, which a simple algebraic analysis of its conditions leads to.

Represent the line to be divided by 2a, the greater

part by x, and consequently the other, or less part, by
2a — x.

Now, the given line and its two parts are required, to

satisfy the following proportion :

2a : x : : x : 2a — x

whence, x% = 4a2 — 2ax

By transposition, x2
-f 2ax = 4a2 =

(2a)
2

If we add a2 to both members of this equation, we
shall have,

x2 + 2ax + a2 =
(2a)

2
-f a2

or, (x -fa)
2 =

(2a)
2
-f a2

This last equation indicates that the lines represented

by (x + a), 2a, and a, are the three sides of a right-

angled triangle, of which (x + a) is the hypotenuse, the

given line, 2a, one of the sides, and its half, a, the other.

Therefore, let AB represent the

given line, and from the extremity, B,

draw BO at right angles to AB, and

make it equal to one half of AB.
With C, as a center, and radius OB,

describe a circle. Draw AC and pro-

duce it to F. With A as a center

and AD as a radius, describe the arc

D.E; this arc will divide the line AB,
as required.

We are now to prove that

AB : AE :: AE : EB
11
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By Th. 18, B. Ill, we have,

AF x AD = AB2

or, AF : AB : : AB : AD
Then, (by Cor., Th. 8, Book II), we may have,

(AF—AB) : AB :: (AB—AD) : AD
Since OB = \AB = \DF\ therefore, AB = LI
Hence, AF—AB = AF—DF—AD = A#.

Therefore, AF : AB :: FB : AF
By taking the extremes for the means, we have,

AB i AF ii AF : FB.

PROBLEM XXV.

To describe an isosceles triangle, having its two equal angles

each double the third angle, and the equal sides of any given

length.

Let AB be one of the equal sides of

the required triangle ; and from the

point A, with the radius AB, describe

an arc, BD.
Divide the line AB into extreme acd

mean ratio by the last problem, and sup-

pose the point of division, and A the

greater segment.
From the point B, with AC, the greater segment, as a

radius, describe another arc, cutting the arc BD in D.

Draw BD, DO, and DA. The triangle ABD is the tri-

angle required.

As AC = BD, by construction
;
and as AB is to A

as A C is to B C, by the division of AB
;
therefore

AB : BD : : BD : BC
Now, as the terms of this proportion are the sides ot"

the two triangles about the common angle, B, it follows,

(Cor. 2, Th. 17, B. II), that the two triangles, ABD and
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BBC, are equiangular; but the triangle ABB is isos-

celes; therefore, BBQ is isosceles also, and BB == BC\
but BB = AC: hence, BC = AC, (Ax. 1), and the tri-

angle ACB is isosceles, and the
[__
CBA =

|

-^L. But

the exterior angle, BCB = CBA -f A, (Th. 12, B. I),

Therefore, \__BCB, or its equal [__B = L CBA + [__A ;
or

the angle B = 2[__A. Hence, the triangle ABB has each

of its angles, at the base, double of the third angle.

Scholium.—As the two angles, at the base of the triangle ABD, are

equal, and each is double the angle A, it follows that the sum of the

three angles isJive times the angle A. But, as the three angles of every

triangle are always equal to two right angles, or 180°, the angle A
must be one fifth of two right angles, or 36°

; therefore, BD is a chord

of 36°, when AB is a radius to the circle ; and ten such chords would

extend exactly round the circle, or would form a decagon.

PROBLEM XXVI,

Within a given circle to inscribe a triangle, equiangular to

a given triangle.

Let ABC be the circle, and

abc the given triangle. From

any point, as A, draw EB tan-

gent to the given circle at A
9

(Problem 12).

From the point A, in the line

AB, lay off the angle BAC—
the angle b, (Problem 5),

and the angle BAB — the angle
c, and draw BC.

The triangle ABC is inscribed in the circle; It 13 equi-

angular to the triangle abc, and hence it is the triangle

required.

Proof, (Th. 12, B. HI).
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PROBLEM XXVII,

To inscribe a regular pentagon in a given circle.

1st. Describe an isosceles tri-

angle, abc, having each of the

equal angles, b and c, double the

third angle, a, by Problem 25.

2d. Inscribe the triangle,

ABO, in the given circle, equi-

angular to the triangle abc, by
Problem 26

;
then each of the angles, B and 0, is double

the angle A.

3d. Bisect the angles B and 0, by the lines BD and

OE, (Problem 2), and draw AE, EB, OB, BA; and the

figure AEBOB is the pentagon required.

By construction, the angles BAO, ABB, BBO, BOE,
EOA, are all equal ; therefore, (B. in, Th. 9, Cor.), the

arcs, BO, AB, BO, AE, and EB, are all equal; and if

the arcs are equal, the chords AE, EB, etc., are equal.

Scholium.—The arc subtended by one of the sides of a regular pen-

360°
tagon, being one fifth of the whole circumference, is equal to ——==72°'

u

PROBLEM XXVIII.

To inscribe a regular hexagon in a circle.

D aw any diameter of the circle, as

AB. and from one extremity, B, draw

BB equal to BO, the radius of the

circle. The arc, BB, will be one sixth

part of the whole circumference, and

the chordBB will be a side of the regu-
lar polygon of six sides.

In the A OBB, as OB = OB, and BB= OB by con-

struction, the A is equilateral, and of course equiangular.

Since the sum of the three angles of every A is equal

to two right angles, or to 180 degrees, when the
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three angles are equal to one another, each one of them
must be 60 degrees ; but 60 degrees is a sixth part of

360 degrees, the whole number of degrees in a circle ;

therefore, the arc whose chord is equal to the radius, is a

sixth part of the circumference
; and, if a polygon of six

equal sides be inscribed in a circle, each side will be

equal to the radius.

Scholium.— Hence, as BD is the chord of 60°, and equal to BC or

CD, we say generally, that the chord of 60° is equal to radius.

PROBLEM XXIX.

To find the side of a regular polygon offifteen sides, which

may be inscribed in any given circle.

Let CB be the radius of the given

circle; divide it into extreme and
mean ratio, (Problem 24), and make
BD equal to CB, the greater part;
then BD will be a side of a regular

polygon of ten sides, (Scholium to

Problem 25). Draw BA = to CB, and
it will be a side of a polygon of six sides. Draw DA,
and that line must be the side of a polygon which cor-

responds to the arc of the circle expressed by \ less j\,

of the whole circumference
;
or J

—
j^ = g% = T^ ; that

is, one-fifteenth of the whole circumference
; or, DA is

a side of a regular polygon of 15 sides. But the 15th

part of 360° is 24°
; hence the side of a regular inscrioed

polygon of fifteen sides is the chord of an arc of 24°.

PROBLEM XXX.

In a given circle to inscribe a regular polygon of any num
her of sides, and then to circumscribe the circle by a similar

polygon.
11*
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Let the circumference of the circle, whose cetter is C,

be divided into any number of equal arcs, as amb, bnc,

cod, etc. ;
then will the polygon abode, etc., bounded by

the chords of these arcs, be regu-
lar and inscribed

;
and the poly-

gon ABODE, etc., bounded by
the tangents to these arcs at their

middle points m, n, o, etc, be a

3imilar circumscribed polygon.
First. — The polygon abode,

etc., is equilateral, because its

sides are the chords of equal
arcs of the same circle, (Th. 5, B. Ill) ;

and it is equi-

angular, because its angles are inscribed in equal segments
of the same circle, (Th. 8, B. III). Therefore the poly-

gon is regular, (Def. 14, B. Ill), and it is inscribed, since

the vertices of all its angles are in the circumference of

the circle, (Def. 13, B. III).

Second.—Ifwe draw the radius to the point of tangency
of the side AB of the circumscribed polygon, this radius

is perpendicular to AB, (Th. 4, B. Ill), and also to the

chord ab, (B. Ill, Th. 1, Cor.) ;
henceAB is parallel to a5,

and for the same reason BO is parallel to be
; therefore

the angle ABO is equal to the angle abc, (Th. 8, B. I).

In like manner we may prove the other angles of the

circumscribed polygon, each equal to the corresponding

angle of the inscribed polygon. These polygons are

therefore mutually equiangular.

Again, ifwe draw the radii Om and On, and the line 0B>
the two A's thus formed are right-angled, the one at n
and the other at n, the side OB is common and Om is

equal to On ; hence the difference of the squares descril^ed

on OB and Om is equivalent to the difference of the

squares described on OB and On. But the first difference

is equivalent to the square described on Bm, and the

second diffeience is equivalent to the square described
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on Bn
;
hence Brn is equal to Bn, and the two right-

angled triangles are equal, (Th. 21, B. I), the angle BOm
opposite the side Bm being equal to the angle BOn, op-

posite the equal side Bn. The line OB therefore passea

through the middle point of the arc mbn ; hut because m
and n are the middle points of the equal arcs amb and

bnc, the vertex of the angle abc is also at the middle

point of the arc mbn. Hence the line OB, drawn from

the center of the circle to the vertex of the angle ABC,
also passes through the vertex of the angle abc. By pre-

cisely the same process of reasoning, we may prove that

00 passes through the point e, OB through the point d,

etc.
; hence the lines joining the center with the vertices

of the angles of the circumscribed polygon, pass through
the vertices of the corresponding angles of the inscribed

polygon ;
and conversely, the radii drawn to the vertices

of the angles of the inscribed polygon, when produced,

pass through the vertices of the corresponding angles
of the circumscribed polygon.

Now, since ab is parallel to AB, the similar A's abO

and ABO, give the proportion

Ob : OB :: ab : AB,
and the A'a,bcO and BOO, give the proportion

Ob : OB : : be : BO.

As these two proportions have an antecedent and con-

sequeut, the same in both, we have, (Th. 6, B. II),

ab : AB : : bo : BO.

In like manner we may prove that

be : BO : : cd : OB, etc., etc.

The two polygons are therefore not only equiangular,
but the sides about the equal angles, taken in the same

order, are proportional ; they are therefore similar, (Def
16. B. IT).
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Cor. 1. To inscribe any regular polygon in a circle, we

have only to divide the circumference into as many equal

parts as the polygon is to have sides, and to draw the

chords of the arcs; hence, in a given circle, it is possible

to inscribe regular polygons of any number of sides

whatever. Having constructed any such polygon in a

given circle, it is evident, that by changing the radius of

the circle without changing the number of sides of the

polygon, it may be made to represent any regular poly-

gon of the same name, and it will still be inscribed in a

circle. As this reasoning is applicable to regular poly-

gons of whatever number of sides, it follows, that any

regular polygon may be circumscribed by the circumference

of a circle.

Cor. 2. Since ab, be, cd, etc., are equal chords of the

same circle, they are at the same distance from the

center, (Th. 3, B. Ill) ; hence, if with as a center, and

Ot, the distance of one of these chords from that point,

as a radius, a circumference be described, it will touch

all of these chords at their middle points. It follows,

therefore, that a circle may be inscribed within any regular

polygon.

Scholium.—The center, 0, of the circle, may be taken as the center

of both the inscribed and circumscribed polygons ;
and the angle

A OB, included between lines drawn from the center to the extremities

of one of the sides AB, is called the angle at the center." The perpen-

dicular drawn from the center to one of the sides is called the Ajpothem

of the polygon.

Cor. 3. The angle at the center of any regular polygon
is equal to four right angles divided by the number of

sides of the polygon. Thus, if n be the number of sides

of the polygon, the angle at the center will be expressed

v 360°

n

Cor. 4. If the arcs subtended by the sides of any

regular inscribed polygon be bisected, and the chords

of these semi-arcs be drawn, we shall have a regular
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inscribed polygon of double the number of sides. Thus,
from the square we may pass successively to regular
inscribed polygons of 8, 16, 32, etc., sides. To get the

corresponding circumscribed polygons, we have merely
to draw tangents at the middle points of the arcs sub-

tended by the sides of the inscribed polygons.
Cor, 5. It is plain that each inscribed polygon is but

a part of one having twice the number of sides, while

each circumscribed polygon is but a part of one having
o^p hqlf thp. number of sides
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BOOK V.

ON THE PROPORTIONALITIES AND MEASUREMENT
OF POLYGONS AND CIRCLES.

PROPOSITION I.—THEOREM.

The area of any circle is equal to the product of its radius

by one half of its circumference.

Let CA be the radius of a circle,

and AB a very small portion of its

circumference; then AOB will be a

sector. We may conceive the whole

circle made up of a great number of

such sectors; and when each sector

is very small, the arcs AB, BB, etc.,

each one taken separately, may be regarded as nght
lines

;
and the sectors CAB, CBD, etc., will be triangles.

The triangle, AOB, is measured by the product of the

base, A 0, multiplied into one half the altitude, AB, (Th.

33, Book I) ;
and the triangle BCD is measured by the pro-

duct of BC, or its equal, AC, into one half BB
;
then the

area, or measure of the two triangles, or sectors, is the

product of A C, multiplied by one half of AB plus one

half of BB, and so on for all the sectors that compose
the circle

; therefore, the area of the circle is measured

by th g product of the radius into one half the circumference.
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PROPOSITION II.— THEOREM.

Circumferences of circles are to one another as their radii,

and their areas are to one another as the squares of their

radii.

Let CA be the radius of a circle,

and Ca the radius of another circle.

Conceive the two circles <x> be so

placed upon each other so as to have
a common center.

Let AB be such a certain definite

portion of the circumference of the

larger circle, that m times AB will represent that cir-

cumference.

But whatever part AB is of the greater circumference,
the same part ab is of the smaller; for the two circles

have the same number of degrees, and are of course sus-

ceptible of division into the same number of sectors.

But by proportional triangles we have,

CA : Ca : : AB : ab

Multiply the last couplet by m, (Th. 4, B. II), and we
have

CA : Ca :: m.AB : m.ab.

That is, the radius of one circle is to the radius of another,

as the circumference of the one is to the circumference of the

other.

To prove the second part of the theorem, let C repre-
sent the area of the larger circle, and c that of the

smaller
; now, whatever part the sector CAB is of the

circle C, the sector Cab is the corresponding part of the

circle c.

That is, C : c

but, CAB : Cab

Therefore, C : c

CAB : Cab,

{CAf:(Ca)
2
, (Th.20,B.H).

(CAY : (Caf, (Th. 6, B. II).

That is, the area of one circle is to the area of another, as
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the square of the radius of the one is to the square of the

radius of the other.

Hence the theorem.

Cor. If : c :: (OAf : (Ca)
2
,

then, C : c ::4(£M)
2

: 4 ((7a)
2
.

But 4 (QAf is the square of the diameter of the larger

circle, and 4 (Oaf is the square of the diameter of the

smaller. Denoting these diameters respectively by B
and d, we have,

: c : : D2
: d\

That is, the areas of any two circles are to each other, a%

the squares of their diameters.

Scholium.— As the circumference of every circle, great or small, is

assumed to be the measure of 360 degrees, if we conceive the circum-

ference to be divided into 360 equal parts, and one such part repre-

sented byAB on one circle, or ab on the other, AB and ab will be very
near straight lines, and the length of such a line as ^LBwill be greater

or less, according to the radius of the circle
; but its absolute length

cannot be determined until we know the absolute relation between th«

diameter of a circle and its circumference.

PROPOSITION III.—THEOREM.

When the radius of a circle is unity, its area and semi-

circumference are numerically equal.

Let B represent the radius of any circle, and the Greek

letter, *, the half circumference of a circle whose radius

is unity. Since circumferences are to each other as their

radii, when the radius is B, the semi-circumference will

be expressed by *B.

Let m denote the area of the circle of which B is the

radius
; then, by Theorem 1, we shall have, for the area

of this circle, icB2 = m
y which, when B =

1, reduces to

«r = m.

This equation is to be interpreted as meaning that the

semi-circumference contains its unit, the radius, as many
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times as the area of the circle contains its unit, the

square of the radius.

Remark.— The celebrated problem of squaring the circle has for its

object to find a line, the square on which will be equivalent to the area

of a circle of a given diameter ; or, in other words, it proposes to find

the ratio between the area of a circle and the square of its radius.

An approximate solution only of this problem has been as yet dis-

covered, but the approximation is so close that the exact solution ii

no longer a question of any practical importance.

PROPOSITION IV.—PROBLEM.

Given, the radius of a circle unity, to find the areas of

regular inscribed and circumscribed hexagons.

Conceive a circle described with the radius CA, and in

this circle inscribe a regular polygon of six sides (Prob.

28, B. IV), and each side will be

equal to the radius CA ; hence,
the whole perimeter of this poly-

gon must be six times the ra-

dius of the circle, or three times

the. diameter. The chord bd is
Ft

bisected by CA. Produce Cb and Cd, and through the

point A, draw BD parallel to bd ;
BD will then be a 3ide

of a regular polygon of six sides, circumscribed about

the circle, and we can compute the length of this line,

BD, as follows : The two triangles, Cbd and CBD, are

equiangular, by construction ; therefore,

Ca : bd : : CA : BD.

Now, let us assume CA = Cd = the radius of the

circle, equal unity; then bd = l, and the preceding pro-

portion becomes

Ca : 1 :: 1 : BD (1)

In the right-angled triangle Cad, we have,

(Cay+ (ad)*= (C'dy, (Th. 39, B. I).

That is, (Ca)
2 + i= l, because Cd=l, and ad— \.

12
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"Whence, Ca = J >/3. This value of Ca, substituted in

proportion (
1

), gives

|^3 : 1 : : 1 : BD; hence, BD= JL
But the area of the triangle Cbd is equal to bd(= 1,)

multiplied by J Ca = \ ^3 ;
and the area of the triangle

CBD is equal to BD multiplied by \CA.

"Whence, area, Cbd = J v/3,

and, area, CBD » ,i

But the area of the inscribed polygon is six times that

of the triangle Cbd, and the area of the circumscribed

polygon is six times that of the triangle CBD.
Let the area of the inscribed polygon be represented

by p, and that of the circumscribed polygon by P.

Then^ = ?V3, andP ?«^J - 2^3.
2 •a v/3

3 3

Whence^ : P : : ^3 : 2%/3 ::£:2::3:4::9 : 12

^ = 2^3
= 2.59807621. P = 2^3 = 3.46410161.

Now, it is obvious that the area of the circle must be

included between the areas of these two polygons, and

not far from, but somewhat greater than, their half sum,
which is 3.03 -f ; and this may 'be regarded as the first

approximate value of the area of the circle to the radius

unity.

PROPOSITION Y.—PROBLEM.

(riven, the areas of two regular polygons of the same nvm
her of sides, the one inscribed in and the other circumscribed

about, the same circle, tofind the areas ofregular inscribed and

circumscribed polygons of double the number of sides.

Let
j? represent the area of the given inscribed polygon,

and P that of the circumscribed polygon of the same
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nunibei of sides. Also denote by p' the area of the

inscribed polygon of double the number of sides, and by
P' that of the corresponding circumscribed polygon.

Now, if the arc KAL be some exact part, as one-fourth,

one fifth, etc., of the circumference of the circle, of which

is the center and CA the radius, then will KL be the

side of a regular inscribed polygon, and the triangle

KCL will be the same part of the whole polygon that

the arc KAL is of the whole circumference, and the

triangle CDB will be a like part of the circumscribed

polygon. Draw QA to the point of tangency, and bisect

the angles ACB and ACD, by the lines CGr and CLJ, and

draw KA.
It is plain that the triangle

ACK is an exact part of the

inscribed polygon of double the

number of sides, and that the

A ECG- is a like part of the cir-

cumscribed polygon of double

the number of sides. Repre-
sent the area of the A LCKbj
a, and the area of the A BCD
by b, that of the A ACK by x,

and that of the A ECG- by y, and suppose the A's, KCL
and BBC, to be each the nth. part of their respective

polygons.

Then, na—p, nb = P, 2nx = p',

and, 2ny = P f
;

But, by (Th. 33, B. I), we have

CM. MK=a (1)

CA . AD =b (2)

QA . MK= 2x (3)

Multiplying equations (1) and (2), member by member,
we have

(CM . AD) x (CA . MK) =- ab (4 )
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From the similar A's OMK and CAD, we have

CM : MK :: CA : AD
whence CM . AD = CA . MK
But from equation (

3
) we see that each memher of

this last equation is equal to 2x; hence equation (4)

becomes
2x . 2x = <*5

If we multiply both members of this by n2 n h,

we shall have
4t&

2
.z
2 = wa.w5 = p.P

or, taking the square root of both members,

2nx = s/p^P

That is, the area of the inscribed polygon of double the

number of sides is a mean proportional between the areas of

the given inscribed and circumscribed polygons p and P.

Again, since CE bisects the angle ACD, we have, by,

(Th. 24, B. II),

AE : ED CA : CD
CM: CK
CM: CA
CM: CM+ CA.hence, AE : AE +ED

Multiplying the first couplet of this proportion by CA,
and the second by MK, observing that AE -f ED = AD,
we shall have

AE.CA : AD.CA :: CM.MK : (CM + CA) MK.

But AE. CA measures the area of the A CEG-, whi 3h

we have called y, AD.CA = A CBD — b, CM.MK -
A CKL =

a, and (CM 4- CA)MK= a CKL + 2a CAK=
a -h 2x, as is seen from equations (1) and (3). Therefore,

the above proportion becomes

y : b :: a : a + 2x.

Multiplying the first couplet by 2n, and the second by

w, we shall have
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2m/ : 2nb : : na : na -f 2wa:

That is, P' : 2P :: p : p + /
whence, P' = —-±-

and as the value ofp
r has been previously fourd equal to

*SPp, the value of P' is known from this last equation,
and the problem is completely solved.

PROPOSITION VI.—PROBLEM.
To determine the approximate numerical value of the area

of a circle, when the radius is unity.

"We have now found, (Prob. 4), the areas of regular
inscribed and circumscribed hexagons, when the radius

of the circle is taken as the unit ; and Prob. 5 gives us

formulae for computing from these the areas of regular
inscribed and circumscribed polygons of twelve sides,

and from these last we may pass to polygons of

twenty-four sides, and so on, without limit. Now, it is

evident that, as the number of sides of the inscribed

polygon is increased, the polygon itself will increase,

gradually approaching the circle, which it can never sur-

pass. And it is equally evident that, as the number of

sides of the circumscribed polygon is increased, the poly-

gon itself will decrease, gradually approaching the circle,

less than which it can never become.

The circle being included between any two corres-

ponding inscribed and circumscribed polygons, it will

differ from either less than they differ from each other ;

and the area of either polygon may then be taken as tne

area of the circle, from which it will differ by an amount

less than the difference between the polygons.

It is also plain that, as the areas of the polygons ap-

proach equality, their perimeters will approach coinci-

dence with each other, and with the circumference of

the circle.

12*



138 GEOMETRY.

Assuming the areas already found for the inscribed

and circumscribed hexagons, and applying the formulae

of Prob. 5 to them and to the successive results ob.

tained, we may construct the following table :

NUMBER OB
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the Greek letter #, and, therefore, when any diameter of

a circle is represented by D, the circumference of the

same circle must be *D. If the radius of a circle is re-

presented by B, the circumference must be represented

by 2«B.

Scholium.— The side of a regular inscribed hexagon subtends an

arc of 60°, and the side of a regular polygon of twelve sides subtends

an arc of 30°
;
and so on, the length of the arc subtended by the sides

of the polygons, varying inversely with the number of sides.

Angles are measured by the arcs of circles included between their

sides
; they may also be measured by the chords of these arcs, or rather

by the half chords called sines in Trigonometry. For this purpose, it

becomes necessary to know the length of the chord of every possible

arc of a circle.

PROPOSITION VII.—PROBLEM.
Given, the chord of any arc, to find the chord of one half

that arc, the radius of the circle being unity.

Let FE be the given chord, and draw
the radii QA and QE, the first perpen-
dicular to FE, and the second to its ex-

tremity, E.

Denote FE by 2c, and the chord of

the half arc AE by. a;.

Then, in the right-angled triangle,

DOE, we have
~

DQ2 = QE 2 — DE 2

. Whence, since

QE = 1, D<7 = ^l— c\

If from QA = 1 we subtract DO, we shall have AD.
That is, AD = 1 — </T=7; butAD2

+ DE 2 = AE\
and AD* = 2 — 2^1 — c

2 — c\ Adding to the first

member of this last equation DE
2

,
and to the second its

value c
2

,
we have

AD2

+ DE2=2-2 Vl 7̂.

Whence, AE= x/2— 2<Sl— c
2

,
the value sought.

By applying this formula successively to any known

chord, we can find the chord of one half the arc, that of

half of the half, and so on, to the chords of the most

minute arcs.
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Application,

The greatest
chord in a circle is its diameter, which is

2 when the radius is 1; therefore, we may commence

by making 2c = 2, and c- = 1.

Then, AE = ^2-21/T^c8 = v/2—2v' l^T- ^2 -
1.41421356, which is the chord of 90°.

ISTow make 2c = 1.41421356, and c -.70710678 - J^X
We shall then have,

chord of 45°=V2- V2= i/2- 1.41421356- ^.58578644-

.7653 + .

Again, placing 2<?=.7653-f-, and applying the formula,
we can obtain the chord of 22° 30', and from this the

chord of 11° 15', and so on, as far as we please.

We may take, for another starting point, the chord of

60°, which is known to be equal to the radius of the

circle,(Prob. 26, B. IV). If, as above, we make successive

applications of the formula, putting first 2c = 1, we shall

arrive at the results in the following
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product of .002045307 by 3072, which is 6.283183104 -
circumference whose radius is unity. The half of this,

3.141592552, is the semi-circumference, the more exact

value of which, as stated, (Prop. 6), is 3.141592653.

The value of the half circumference being now deter-

mined, if that of any arc whatever be required, we have

merely to divide 3.141592, etc., by 10800, the number of

minutes in a semi-circumference, and multiply the quo-

tient by the number of minutes in the arc whose length

is required.

But this investigation has been carried far enough for

our present purposes. It will be resumed under the

subject of Trigonometry.

We insert the following beautiful theorem for the tri-

section of an arc, although not necessary for practical

application. Those not acquainted with cubic equations

may omit it.

PROPOSITION VIII.—THEOREM.

Given, the chord of any arc, to determine the chord of one

third of such arc.

Let AE be the given chord, and

conceive its arc divided into three

equal parts, as represented by AB,
BD, and BE.

Through the center draw BCCr, and

draw AB. The two A's, CAB and

ABF, are equiangular; for, the angle

FAB, being at the circumference, is

measured by one half the arc BE, which is equal to AB,
and the angle BOA, being at the center, is measured by
the arc AB

; therefore, the angle FAB = the angle BOA ;

but the angle OBA or FBA, is common to both tri-

angles ; therefore, the third angle, CAB, of the one tri-

angle, is equal to the third angle, AFB, of the other,
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(Th. 12, B. I, Cor. 2), and the two triangles are equi-

angular and similar.

But the A ACB is isosceles; therefore, the A AFB is

alsc isosceles, and AB = AF, and we have the following

proportions :

CA : AB : : AB : BF.

Now, letAF= e, AB = x, AC= 1. Then AF= x> and

EF— c— x, and the proportion becomes,

1 : x : : x : BF, Hence, BF= x\

Also, Fa = 2— x\

As AE and i?6r are two chords intersecting each other

at the point F, we have,

GFx FB = AFx FE, (Th. 17, B. HI).
That is, (2

— x2

)
x* = x

(c
—

x) ;

or, #3— 3a; = — <?.

If we suppose the arcAE to be 60 degrees, then c = 1,

and the equation becomes or
5— 3x =— 1

;
a cubic equa-

tion, easily resolved by Horner's method, (Robinson's

New University Algebra, Art. 464), giving x = .347296 +
the chord of 20°. This again may be taken for the value

of c, and a second solution will give the chord of 6° 40',

and so on, trisecting successively as many times as we

please.

PRACTICAL PROBLEMS.

The theorems and problems with which we have been

thus far occupied, relate to plane figures; that is, to

figures all of whose parts are situated in the same plane.

It yet remains for us to investigate the intersections and

relative positions of planes ;
the relations and positions

of lines with reference to planes in which they are not

contained ;
and the measurements, relations, and proper-

ties of solids, or volumes. But before we proceed to this,

it is deemed advisable to give some practical problems
for the purpose of exercising the powers of the student,
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and of fixing in his mind those general geometrical prin-

ciples with which we must now suppose him to be

acquainted. .

1. The base of an isosceles triangle is 6, and the oppv>-

site angle is 60°
; required the length of each of the other

two equal sides, and the number of degrees in each of

the other angles.

2. One angle of a right-angled triangle is 30°
;
what

is the other angle ? Also, the least side is 12, what is

the hypotenuse ?

A J The hypotenuse is 24, the double of the least
***'

\ side. Why?
3. The perpendicular distance between two parallel

lines is 10
;
what angles must a line of 20 make with

these parallels to extend exactly from the one to the

other ? Arts. The angles must be 30° and 150°.

4. The perpendicular distance between two parallels

is 20 feet, and a line is drawn across them at an angle of

45°
;
what is its length between the parallels ?

Ans. 20^2.

5. Two parallels are 8 feet asunder, and from a point
in one of the parallels two lines are drawn to meet the

other
;
the length of one of these lines is 10 feet, and

that of the other 15 feet
;
what is the distance between

the points at which they meet the other parallel ?

Ans. 6.69 ft., or 18.69 ft. (See Th. 39, B. I).

6. Two parallels are 12 feet asunder, and, from a point

on one of them, two lines, the one 20 feet and the other

18 feet in length, are drawn to the other parallel ; what
is the distance between the two lines on the other parallel,

and what is the area of the triangle so formed ?

c The distance on the other parallel is 29.416

Ans. < feet, or 2.584 feet; and the area of the tri

1 angle is 176.496, or 15.504 square feet.

7. The diameter of a circle is 12, and a chord of the
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circle is 4; what is the length of the perpendicular
drawn from the center to this chord ? (See Th. 3, B. III).

Ans. 4^2.
8. Two parallel chords in a circle were measured and

found to be 8 feet each, and their distance asunder was
6 feet ; what was the radius of the circle ?

Ans. 5 feet.

9. Two chords on opposite sides of the center of a

cirsle are parallel, and one of them has a length of It)

and the other of 12 feet, the distance between them

being 14 feet. What is the diameter of the circle ?

Ans. 20 feet.

10. An isosceles triangle has its two equal sides, 15

each, and its base 10. What must be the altitude of a

right-angled triangle on the same base, and having an

equal area?

11. From the extremities of the base of any triangle,

draw lines bisecting the other sides
;
these two lines in-

tersecting within the triangle, will form another triangle
on the same base. How will the area of this new tri-

angle compare with that of the whole triangle ?

Ans. Their areas will be as 3 to 1.

12. Two parallel chords on the same side of the center

of a circle, whose diameter is 32, are measured and found

to be, the one 20, and the other 8. How far are they
asunder? Ans. ^240"— ^156"= 3 +.

If we suppose the two chords to be on opposite sides of the

center, their distance apart will then be v'240 -j- v/156= ] 5.49 -f-

12.49 = 27.98.

13. The longer of the two parallel sides of a trapezoid
is 12, the shorter 8, and their distance asunder 5. What
is the area of the trapezoid ? and if we produce the two

inclined sides until they meet, what will be the area of

the triangle so formed ?

Ans. Area of trapezoid, 50
;
area of triangle, 40

;
area

of triangle and trapezoid, 90.
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14. The base of a triangle is 697, one of the sides is

534, and the other 813. If a line be drawn bisecting the

angle opposite the base, into what two parts will the

bisecting line divide the base ? (See Th. 24, B. II).

A ( The greater part will be 420.684
;m '

\ The less " " 276.316.

15. Draw three horizontal parallels, making the dis-

tance between the two upper parallels 7, and that be-

tween the middle and lower parallels 9
;
then place be-

tween the upper parallels a line equal to 10, and from

the point in which it meets the middle parallel draw to

the lower a line equal to 11, and join the point in which

this last line meets the lower parallel, with the point in

the upper parallel, from which the line 10 was drawn.

Required the length of this line, and the area of the

triangle formed by it and the two lines 10 and 11.

The adjoining figure

will illustrate. Let A be

the point on the upper

parallel from which the

line 10 is drawn. Then,

AF = 7, AB = 10,

FB = \/l00 —19 =
•51.
BI1 = FD = 9, B C

= U,HC= </l21_81
= %/40.

Whence, DC = ^51
f ^40.

AC 2 - (V5l 4. </40)
8

-f (16)
a

;
AG = 20.89, Ans.

The area of the triangle, ABC, can be determined by first find-

ing the area of the trapezoid, ABHD, then the area of the trian-

gle, BHC, and from their sum subtracting the area of the triangle,

ADC.

16. Construct a triangle on a base of 400, one of the

angles at the base being 80°, and the other 70°
;
and

13 k
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determine the third angle, and the area of the triangle
thus constructed.

r

The third angle is 30°, and as nearly as our

scale of equal parts can determine for us, the

side opposite the angle 80° is 787, and that

opposite 70° is 740.

The exact solution of problems like the last, except in a few par-

ticular cases, requires a knowledge of certain lines depending on

the angles of the triangle. The properties and values of these lines

are investigated in trigonometry ;
and as we are not yet supposed

to be acquainted with them, we must be content with the approxi-

mate solutions obtained by the constructions and measurements

made with the plane scale.

17. If we call the mean radius of the earth 1, the

mean distance of the moon will he 60
;
and as the mean

distance of the sun is 400 times the distance of the

moon, its distance will he 400 times 60. The sun and

moon appear to have the same diameter; supposing,

then, the real diameter of the moon to be 2160 miles,

what must he that of the sun ?

Let E be the center of the earth, M that of the moon, and S
that of the sun, and suppose ENP to be a line from the -center of

the earth, touching the moon and the sun.

Then, EM : MN : : ES : SP-,

but MNia the radius of the moon, and SP that of the sun. Mul-

tiplying the consequents by 2, the above proportion becomes

EM: 2MN :: ES : 2SP-,

or in numbers, 60 : 2160 :: 400 X 60 : 2SP;

whence, 2 JSP = sun's diameter = 864000 miles, Ans.

18. In Problem 15, suppose BO to be drawn on the

other side of BR, what, then, will be the value ofA O,

and what the area of the triangle AQB1

Am <AC= 16,021;
1 A.rea of triangle, £(9t

/51 + 7V40).
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19. A man standing 40 feet from a building which was
24 feet wide, observed that when he closed one eye, the

width of the building just eclipsed or hid from view 90

rods of fence which was parallel to the width of the

building; what was the distance from the eye of the

observer to the fence ? Ans. 2475 feet.

20. Taking the same data as in the last problem, ex-

cept that we will now suppose the direction of the fence

to be inclined at an angle of 45° to the side of the

building which we see
; what, in this case, must be the

distance between the eye of the observer and the remoter

point of the fence ?

Let EF be the width of the house, E the position of the eye, and

AB that of the fence. Draw BD perpendicular to EA produced ;

then, since the triangle ABE is right-angled and isosceles, we have

AE = EB
}
and 2AE* = AB2 = (90)

2

;
BE = 63.64 rods, and the

similar triangles EFH and EEB give the proportion

EF : EF : : BE : EE = 1750.1 feet;

and from this we find

EB2
mm EE2 + BE2 = (63.64 x 3

2
3
)

2

-f (1750.1)*

Whence EB = 2040.94 -f Ans.

21. In a right-angled triangle, ABO, we have AB m

493, AC= 1425, and BC= 1338
;
it is required to divide

this triangle into parts by a line parallel to AB, whose

areas are to each other as 1 is to 3. How will the sides

AC and BO be divided by this line ? (See Th. 20, B. II).

Ans. Into equal parts.

22. In a right-angled triangle, ABO, right-angled at

B, the base AB is 320, and the angle A is 60°
; required

the remaining angle and the other sides.

A /The angle (7=30°;n8 '

\ AC= 640; BO= 554.24.
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23. A hunter, wishing to determine his distance from
a village in sight, took a point and from it laid off two
lines in the direction of two steeples, wnich he supposed

equally distant from him, and which he knew to be 100

rods asunder. At the distance of 50 feet on each line

from the common point, he measured the distance be-

tween the lines, and found it to be 5 feet 8 inches. How
far was he from the steeples ?

5 ft. 8 in. : 100 rods : : 50 ft. : distance. c 14,55y feet,

or, 68 : 100 x^ x 12 : : 50 : distance.
An8 '

1
°r n

f
arl?

z 13 miles.

24. A person is in front of a building which he knowa
to be 160 feet long, and he finds that it covers 10 minutes

of a degree ;
that is, he finds that the two lines drawn

from his eye to the extremities of the building include

an angle of 10 minutes. What is his distance from the

building? ^^ ( 55
;
004 feet, or

'

( more than 10 miles.

Remark.—The questions of distance, with which we are at present

occupied, depend for their solution on the properties of similar tri-

angles. In the preceding example we apparently have but one tri-

angle, but we have in fact two ; the second being formed by the dis-

tances unity on the lines drawn from the eye of the observer, and the

line which connects the extremities of these units of distance. This

last line may be regarded as the chord of the arc 10 minutes to the

radius unity. We have seen that the length of the arc 180° to the

radius 1, is 3.1415926 ;
hence the chord of 1° or 60' is 0.017453, and

of 10/
it must be 0.0029089. Therefore, by similar triangles, we have

0.0029089 : 160 : : 1 : Ans. = ^~.
25. In the triangle, ABO, we have given the angles

A = 32°, and B = 84°. The side AB is produced, and

the exterior angle CBD thus formed, is bisected by the

line BE, and the angle A is also bisected by the line AE,
BE and AE meeting in the point E. "What is the angle

ft and what is the relation between the angles O and E !

Ans. (7=64°; E=\ ft
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26. Suppose a line to be drawn in any direction be-

tween two parallels. Bisect the two interior angles thus

formed on either side of the connecting line, and prove
that the bisecting lines meet each other at right angles,

and that they are the sides of a right-angled triangle of

which the line connecting the parallels is the hypotenuse.

27. If the two diagonals of a trapezoid be drawn,
show that two similar triangles will be formed, the

parallel sides of the trapezoid being homologous sides

of the triangles. "What will be the relative areas of

these triangles ?

{The

triangles will be to each other

as the squares on the parallel sides

of the trapezoid.

28. If from the extremities of the base of any triangle,

lines be drawn to any point within the triangle, forming
with the base another triangle ;

how will the vertical

angle in this last triangle compare with that in the

original triangle ?

r It will be as much greater than the angle
in the original triangle as the sum of

angles at the base of the new triangle is

less than the sum of those at the base

of the first.

29. The two parallel sides of a trapezoid are 12 and

20, respectively, and their perpendicular distance is 8.

If a line whose length is 14.5 be drawn between the in-

clined sides and parallel to the parallel sides, what is the

area of the trapezoid, and what the area of each part,

respectively, into which the trapezoid is divided ?

Area of the whole, 128 square units;
" smaller part, 33J

"

I
"

larger
"

94J
"

Dividing line at the distance of 2J from

shortei parallel side.

•80. If we assume the diameter of the earth to be

13*
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7956 miles, and the eye of an observer be 40 feet above

the level of the sea, how far distant will an object be,

that is just visible on the earth's surface. (Employ Th*

18, B. Ill, after reducing miles to feet.)

Ans. 40992 feet = 7 miles 4032 feet.

31. The diameter of a circle is 4
;
what is the area of

the inscribed equilateral triangle ? Ans. 3^3.

32. Three brothers, whose residences are at the ver-

tices of a triangular area, the sides of which are severally

10, 11, and 12 chains, wish to dig a well which shall be

at the same distance from the residence of each. Deter-

mine the point for the well, and its distance from their

residences.

Remark.— Construct a triangle, the sides of which are, respectively,

10, 11, and 12. The sides of this triangle will be the chords of a cir-

cle whose radius is the required distance. To find the center of this

circle, bisect either two of the sides of the triangle by perpendiculars,

and their intersection will be the center of the circle, and the location

of the well.

Ans. The well is distant 6.405 chains, nearly, from each

residence.

33. The base of an isosceles triangle is 12, and the

equal sides are 20 each. "What is the length of the per-

pendicular from the vertex to the base; and what the

area of the triangle ?

Ans. Perpendicular, 19.07; area, (19.07) x 6.

34. The hypotenuse of a

right-angled triangle is 45

inches, and the difference be-

tween the two sides is 8.45

inches. Construct the triangle.

Suppose the triangle drawn and

^presented by ABC, DC being the

difference between the two sides.

Now, by inspection, we discover the

steps to be taken for the construc-

tion of the triangle As AD = AB,
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the angle ADB, must be equal to the angle DBA, and each equal

to 45°.

Therefore, draw any line, AC, and from an assumed point in it

as D, draw BD, making the angle ADB = 45°. Take from a

scale of equal parts, 8.45 inches, and lay them off from D to C, and

with C as a center, and CB = 45 inches as a radius, describe an

arc cutting BD in B. Draw CB, and from B, draw BA at right

angles to A C) then is ABC the triangle sought.

Ans. AB =27.3; AC= 35.76, when carefully constructed.

35. Taking the same triangle as in the last problem, if

we draw a line bisecting the right angle, where will it

meet the hypotenuse?
Ans. 19.5 from B

;
and 25.5 from Q.

36. The diameters of the hind and fore wheels of a

carriage, are 5 and 4 feet, respectively ;
and their centers

are 6 feet asunder. At what distance from the fore wheels

will the line, passing through their centers, meet the

ground, which is supposed level ? Ans. 24 feet.

37. If the hypotenuse of a right-angled triangle is 35,

and the side of its inscribed square 12, what are its sides?

Ans. 28 and 21.

38. What are the sides of a right-angled triangle

having the least hypotenuse, in which if a square be in-

scribed, its side will be 12 ?

r The sides are equal to 24 each, and the

Ans. < least hypotenuse is double the diagonal
I of the square.

39. The radius 6f a circle is 25
; what is the area cf a

sector of 50° ?

Remark.— First find the length of an arc of 50° in a circle Vncsa

radius is unity. Then 25 times that will be the length of an arc of

the same number of degrees in a circle of which the radius is 25.

, , -.o ,- • 3.14159265
Length of arc 1° radius unity = ^r—.

(i « goo u « _ 1.04/1J755
g

6

•Area of sector = L04719755 X 125 x f = 272 7077. Ans.
o 2
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BOOK VI.

ON THE INTERSECTIONS OF PLANES, AND THE EEL.
ATIVE POSITIONS OF PLANES AND OF PLANES
AND LINES.

DEFINITIONS.

A Plane has been already defined to be a surface, such

that the straight line which joins any two of its points
will lie entirely in that surface. (Def. 9, page 9.)

1. The Intersection or Common Section of two planes is

the line in which they meet.

2. A Perpendicular to a Plane is a line which makes

right angles with every line drawn in the plane through
the point in which the perpendicular meets it; and, con-

versely, the plane is perpendicular to the line. The

point in which the perpendicular meets the plane is

called the foot of the perpendicular.

3. A Diedral Angle is the separation or divergence of

two planes proceeding from a common line, and is meas-

ured by the angle included between two lines drawn
one in each plane, perpendicular to their common sec-

tion at the same point.

The common section of the two planes is called the

edge of the angle, and the planes are its faces,

4. Two Planes are perpendicular to each other, when their

diedral angle is a right angle.

5. A Straight Line is parallel to a plane, when it will

not meet the plane, however far produced.
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6. Two Planes are parallel, when they will not intersect,

however far produced in all directions.

7. A Solid or Polyedral Angle is the separation or diver-

gence of three or more plane angles, proceeding from a

common point, the two sides of each of the plane angles

being the edges of diedral angles formed by these plane

angles.

The common point from which the plane angles pro-

ceed h called the vertex of the solid angle, and the inter-

sections of its bounding planes are called its edges,

8. A Triedral Angle is a solid angle formed by three

plane angles.

THEOREM I.

Two straight lines which intersect each other, two parallel

straight lines, and three points not in the same straight line,

will severally determine the position of a plane.

Let AB and A be two lines

Intersecting each other at the

point A
; then will these lines

determine a plane. For, conceive

a plane to be passed through AB,
and turned about AB as an axis

until it contains the point in the line AC The plane,

in this position, contains the lines AB and AC, and will

contain them in no other. Again, let AB and BE be

two parallel straight lines, and take at pleasure two

points, A and B, in the one, and two points, D and E,
in the other, and draw AE and BD. The last lines, AB, AE,
or the lines AB, DB from what precedes, determine the posi-

tion of the parallels AB, BE. And again, if A, B, and

be three points not in the same straight line, and we draw
the lines AB and AC, it follows, from the first part of this

proposition, that these points fix the plane.
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Cor. A straight line and a point out of ic determine

the position of a plane.

THEOREM II.

If two planes meet each other, their common points will be

found in, and form one straight line.

Let B and D he any two of the

points common to the two planes,

and join these points by the straight

line BB
;
then will BB contain all

the points common to the two planes,

and he their intersection. For, suppose the planes have

a common point out of the line BB; then, (Cor. Th. 1),

since a straight line and a point out of it determine a

plane, there would be two planes determined by this one

line and single point out of it, which is absurd. Hence

the common section of two planes is a straight line.

Remark.—The truth of this proposition is implicitly assumed in the

definitions of this Book.

THEOREM III.

If a straight line stand at right angles to each of two other

straight lines at their point of intersection, it will be at right

angles to the plane of those lines.

LetAB stand at right angles to i^Fand

CB, at their point of intersection A. Then

AB will be at right angles to any other

line drawn through A in the plane, pass-

ing through EF, OB, and, of course, at

right angles to the plane itself. (Def. 2.)

Through A, draw any line, A G, in the

plane EF, CB, and from any point G, draw GH parallel

to AB. Take HF= AH, and join F and G and produce
FG to B. Because HG is parallel to AB, we have

FH : HA : : FG : GB.
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But, in this proportion, the first couplet is a ratic of

equality; therefore the last couplet is also a ratio of

equality,

That is, FG= GD, or the line FD is bisected in G.

Draw BD, BG, and BF.

"Now, in the triangle AFD, as the base FD is bisected

in G, we have,

AF 2

+~AD
2 - 2AG2

+ 2GF
2

(1) (Th. 42, B. I).

Also, as DF is the base of the a BDF, we have by the

same theorem,

"SF +~BD
2 = 2BG 2 + 2GF

%

(2)

By subtracting (
1

)
from

(
2

),
and observing that BF 2—

AF 2 = AB\ because BAF is a right angle ;
and BD2—

AD1— AB2

,
because BAB is a right angle, we shall have,

AB + AB = 2BG 1— 2AG

lhviding by 2, and transposing AG ,
and we have,

AB' + AG =BG .

This last equation shows that BAG is a right angle.

But AG is any line drawn through A, in the plane FF,
CD ;

therefore AB is at right angles to any line in the

plane, and, of course, at right angles to the plane itself

Cor. 1. The perpendicular BA is shorter than any of

the oblique lines BF, BG, or BD, drawn from the point
B to the plane ;

hence it is the shortest distance from a

point to a plane.

Cor. 2. But one perpendicular can be erected to a plane
from a given point in the plane ; for, if there could be

two, the plane of these perpendiculars would intersect

the given plane in some line, as AG, and both the per-

pendiculars would be at right angles to this intersection

at the same point, which is impossible.

Cor. 3. But one perpendicular can be let fall from a

given point out of a plane on the plane ; for, if there can
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be two, let BCr and BA be such perpendiculars, then

would the triangle BAGf be right angled at both A and

<r, which is impossible.

THEOREM IV.

If from any 'point of a perpendicular to a plane, oblique

lines be drawn to different points in the plane, those oblique

lines which meet the plane at equal distances from the foot of

the perpendicular are equal; and those which meet the plane

at unequal distances from the foot of the perpendicular are

unequal, the greater distances corresponding to the longer

oblique lines,

Take any point B in

the perpendicular BA to

the plane ST, and draw
the oblique lines BO,
BD, and BE, the points

C, J), and E, being equally
distant from A, the foot

of the perpendicular.
Produce AE to F, and

draw BF; then will BC= BD — BE, and BF> BE.

For, the triangles BAG, BAB, and BAE are all right-

angled at J., the side BA is common, and AC=AD=AE
by construction, hence, (Th. 16, B. I), BC=BD = BE.

Moreover, since AF> AE, the oblique line BF> BE.

Cor. If any number of equal oblique lines be drawn
from the point B to the plane, they will all meet the

plane in the circumference of a circle having the foot of

the perpendicular for its center. It follows from this,

that, if three points be taken in a plane equally distant

from a point out of it, the center of the circle whose cir*

cumference passes through these points will be the foot of

*he ]aerx>endicular drawn from the point to the plane.
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THEOREM V.

The line which joins any point of a perpendicular to a

plane, with the point in which a line in the plane is inter-

sected, at right angles, by a line through the foot of the per-

pendicular, will be at right angles to the line in the plane

Let AB be perpendic-
ular to the plane ST, and

AD a line through its foot

at right angles to EF, a line

in the plane. Connect D
with any point, as B, of the

perpendicular; and BD will

be perpendicular to EF.

Make DF'= DE, and join B to the points E and

F. Since DE= DF, and the angles at D are right

angles, the oblique lines, AE and AF, are equal ; and,

since AE= AF, we have, (Th. 4), BE=BF; therefore

the line BD has two points, B and D, each equally distant

from the extremities E and F of the line EF, and hence

BD is perpendicular to EF at its middle point D.

Cor. Since FD is perpendicular to the two lines AD
und BD at their intersection, it is perpendicular to their

plane ADB, (Th. 3).

ScnoLiuM.— The inclination of a line to a plane is measured by the

angle included between the given line and the line which joins the

point in which it meets the plane and the foot of the perpendicular

drawn from any point of the line to the plane ; thus, the angle BFA ia

the inclination of the line BF to the plane ST.

THEOREM VI.

If either of two parallels is perpendicular to a plane, the

other is also perpendicular to the plane.

Let BA and ED be two parallels, of which one, BA,
is perpendicular to the plane ST; then will the other also

be. perpendicular to the same plane.

14
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The two parallels de-

termine a plane which
intersects the given plane
in AD; through D draw

MN perpendicular to

AD; then, (Cor., Th. 5,)

will MN be perpendicu-
lar to the plane BAD,
and the angle MDE is

therefore a right angle ;
but EDA is also a right angle,

since BA and ED are parallel, and BAD is a right angle

by hypothesis; hence, ED is perpendicular to the two
lines MD and AD in the plane ST; it is therefore perpen-
dicular to the plane, (Th. 3).

Cor. 1. The converse of this proposition is also true
,

that is, if two straight lines are both perpendicular to the same

plane, the lines are parallel.

For, suppose BA and ED to be two perpendiculars ;
if

not parallel, draw through D a parallel to BA, and this

last line will be perpendicular to the plane ; but ED is

a perpendicular by hypothesis, and we should have two

perpendiculars erected to the plane at the same point,

which is impossible, (Cor. 2, Th. 3).

Cor. 2. If two lines lying in the same plane are each

parallel to a third line not in the same plane, the two

lines are parallel. For, pass a plane perpendicular to

the third line, and it will be perpendicular to each of tlva

others ; hence they are parallel ,

THEOREM VII,

A straight line is parallel to a plane, when it is parallel

to a line in the plane.

Suppose the line MX to be parallel to the line CD, in

the plane ST; then will Jf^be parallel to the plane ST
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For, OB being in the plane

ST, and at the same time
g

parallel to MN, it must be the

intersection of the pl°.ne of

these parallels with the plane

ST; hence, if MN meet the

plane ST, it must do so in the T

line OB, or OB produced; but MN and OB are parallel,

and cannot meet; therefore MN, nowever far produced,

can have no point in the plane ST, and hence, (Def. 5), it

is parallel to this plane.

THEOREM VIII.

If two lines are parallel, they will be equally inclined to

any given plane.

Let AB and OB be

two parallels, and ST
any plane met by them
in the points A and

0; then will the lines

AB and OB be equally
inclined to the plane
ST.

For, take any distance, AB, on one of these parallels,

and make OB = AB, and draw A and BB. From the

points B and B let fall the perpendiculars, BE and BF,
on the plane ; join their feet by the line BF, and draw

AB and OF.

Now, since AB is equal and parallel to OB, ABBOh
ft parallelogram, and BB is equal and parallel to A 0,

and BB is parallel to the plane ST, (Th. 7) ; and, since

BE and BF are both perpendicular to this plane, they
are parallel ;

but BB and EF are in the plane of these

parallels; and as EF is in the plane ST, and BB is

parallel to this plane, these two lines must be parallel

and equal, and BBFE is also a parallelogram Now,
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we have shown that BD is equal and parallel to AC, and

EF equal and parallel to BD; hence, (Cor. 2, Th. 6),

EFis equal and parallel to AC, and ACFE is a parallel-

ogram, and AE — CF. The triangles J.^J/ and CDF
have, then, the sides of the one equal to the sides of the

other, each to each, and their angles are consequently

equal; that is, the angle BAE is equal to the angle

DCF; but these angles measure the inclination of the

lines AB and CD to the plane ST, (Scholium, Th. 5).

Scholium.— The converse of this proposition is not generally true ;

that is, straight lines equally inclined to the same plane are not neces-

sarily parallel.

THEOREM IX.

The intersections of two parallel planes by a third plane,

are parallel.

Let the planes QR and ST he intersected by the third

plane, AD : then will the intersections, AB and CD, be

parallel.

Since the lines AB and CD are in the same plane, if

they are not parallel, they will

meet if sufficiently produced;
but they cannot meet out of the

planes QR and ST, in which

they are respectively found;

therefore, any point common to

the lines, must be at the same

time common to the planes ;
and

since the planes are parallel,

(hey have no common point, and the lines, therefore, do

not intersect ;
hence they are parallel.

THEOREM X.

If two planes are perpendicular to the same straight line,

they are parallel to each other.

Let QR and ST be two planes, perpendicular to the

line AB; then will these planes be parallel.
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Also, take any other two points, as

and D, in the first and third planes,

and draw OB, the line passing through
the second plane at F.

Join the two lines by the diagonal

AB, which passes through the second

plane at G. Draw BB, EG, GF, and

AC. We are now to prove that,

AE : EB : : OF : FB.

For the sake of brevity, put AG=X, and GD= Y.

As the planes are parallel, BD is parallel to EG
;
from

the two triangles ABD and AEG, we have, (Th. 17,

B.II);
AE : EB : : X : Y.

Also, as the planes are parallel, GF is parallel to A 0,

and we have,
OF : FD : : X : Y.

By comparing the proportions, and applying Th. 6,

B. II, we have

AE : EB : : OF : FB.

THEOREM XII.

If a straight line is perpendicular to a plane, all planes

passing through that line will be perpendicular to the plane.

Let MNbe a plane, andAB a per-

pendicular to it. Let BO be any
other plane, passing through AB ;

this plane will be perpendicular to

MM
Let BB be the common intersec-

tion of the two planes, and from

the point B, draw in MN BE at right angles to DB.

Then, as AB is perpendicular to the plane MN, it is

perpendicular to every line in that plane, passing through

M

D^
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B
; (Def. 2,) ; therefore, ABE is a right angle. But the

angle ABE, (Def. 3), measures the inclination of the two

planes ; therefore, the plane CB is perpendicular to the

plane MN; and thus we can show that any other plane,

passing through AB, will be perpendicular to MN.
Hence the theorem.

THEOREM XIII.

If two planes are perpendicular to each other, and a line

be drawn in one of them perpendicular to their common in-

tersection, it will be perpendicular to the other plane.

Let the two planes, QR and ST, be perpendicular to

each other, and draw in QR the line CD at right angles
to their common intersection, R V; then will this line be

perpendicular to the plane ST.

In the plane STdraw ED, perpen-
dicular to VR at the point D.

Then, since the planes QR and ST
are perpendicular to each other, the

angle ODE is a right angle, and

CD is perpendicular to the two

lines, ED and VR, passing through
its foot in the plane ST. CD is therefore perpendicular

to the plane ST, (Th. 3).

Cor. Conversely: if we erect a perpendicular to the

plane ST, at any point, D, of its intersection with the

plane QR, this perpendicular will lie in the plane QR.

For, if it be not in this plane, we can draw in the plane
the line CD, at right angles to VR', and, from what has

been shown above, CD is perpendicular to the^lane ST,
and we should thus have two perpendiculars erected to

the plane, ST, at the same point, which is impossible,

(Cor. 2, Th. 8V
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THEOREM XIV.

The common intersection of two planes, 'both of which are

perpendicular to a third plane, will also be perpendicular to

the third plane.

Let MN be the common
intersection of the two

planes, QR and VX, both

of which are perpendicular
to the plane ST; then will

MZ^be perpendicular to the

plane ST For, if we erect

a perpendicular to the plane

ST, at the point M, it will

lie in both planes at the

same time, (Cor. Th. 13); and this perpendicular must

therefore be their intersection. Hence the theorem.

THEOREM XV.

Parallel straight lines included between parallel planes,

are equal.

LetAB and 2) (7be two parallel lines,

included by the two parallel planes,

QR and ST; then will AB = BO.

For, the plane AC, of the parallel

lines, intersects the planes, QR and ST,
in the parallel lines, AB and BO,

(Th. 9) ;
hence ABGD is a parallelogram, and its oppo-

site sides, AB and BO, are equal.

Oot. It follows from this proposition, that parallel planes

are everywhere equally distant
; for, two perpendiculars

drawn at pleasure between the two planes are parallel

lines, (Cor. 1, Th. 6), and hence are equal ;
but these per-

pendiculars measure the distance between the planes.
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THEOREM XVI.

Two planes are parallel when two lines not parallel, lying

in the one, are respectively parallel to two lines lying in the

other.

Let QR and ST be

two planes, the first

containing the two

lines AB and CD
which intersect each

other at E, and the

second the two lines

LM and NO, respect-

ively parallel to AB
and CD-, then will

these planes be par-
allel.

For, ifthe two planes
are not parallel, they must intersect when sufficiently

produced; and their common section lying in both planes
at the same time, would be a line of the plane QR. Now,
the lines AB and CD intersect each other by hypothesis ;

hence one or both of them must meet the common sec-

tion of the two planes. Suppose AB to meet this com-

mon section
; then, since AB and LM are parallel, they

determine a plane, and AB cannot meet the plane ST in

a point out of the line LM; but AB and LM being par-

allel, have no common point. Hence, neither AB nor

CD can meet the common section of the two planes ;
that

», they have no common section, and are therefore par-

allel.

Cor. Since two lines which intersect each other, deter-

mine a plane, it follows from this proposition, that the

plane of two intersecting lines is parallel to the plane of two

other intersecting lines respectively parallel to the first lines
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THEOREM XVII.

When two intersecting lines are respectively parallel to two

other intersecting lines lying in a different plane, the angles

formed by the last two lines will be equal to those formed by

the first two, each to each, and the planes of the angles will be

parallel.

Let QB be the plane
of the two lines AB
and CD, which inter-

sect each other at the

point E, and ST the

plane of the two lines

LM and NO, respect-

ively parallel to AB
and QB

;
then will the

[__BED = \_MPO,
and L EEC - L
MPN, etc., and the

planes QB and ST
will be parallel.

That the plane of one set of angles is parallel to that

of the other, follows from the Corollary to Theorem 16
;

we have then only to show that the angles are equal,

each to each.

Take any points, B and B, on the lines AB and CD,
and draw BD. Lay off PM, equal to and in the same

direction with JEB, and PO, equal to and in the same

direction with BD, and draw MO. Now, since the planes

QR and ST are parallel, and BD is equal and parallel to

PO, BDOP is a parallelogram, and DO is equal and par
allel to EP. For the same reason, BM is equal and

parallel to EP; therefore, BDOM is a parallelogram, and

MO is equal and parallel to BD. Hence the A's, EBD
and PMO, have the sides of the one equal to the sidea

of the other, each to each; they are therefore equal, and



BOOK VI. 167

the I MPO — the
[
BED. In the same manner it can

be proved that \_BEC= \_MPN, etc.

Cor. 1. The plane of the parallels AB and LM is in-

tersected by the plane of the parallels CD and NO, in the

line EP. Now, EB and ED are the intersections of these

two planes with the plane QR, and PM and PO are the

intersections of the same planes with the parallel plane
ST. It has just been proved that the |__BED = [_MPO.
Hence, if the diedral angle formed by two planes, be cut by
two parallel planes, the intersections of the faces of the diedral

angle with one of these planes will include an angle equal
to that included by the intersections of the faces with the other

plane.

Cor. 2. The opposite triangles formed by joining the cor-

responding extremities of three equal and parallel straight

lines lying in different planes, will be equal and the plane* of
the triangles will be parallel.

Let EP, BM, and DO, be three equal and parallel

straight lines lying in different planes. By joining their

corresponding extremities, we have the triangles EBD
and PMO. Now, since EP and BM are equal and

parallel, EBMP is a parallelogram, and EB is equal and

parallel to PM; in the same manner, we show that ED
is equal and parallel to PO, and BD to MO; hence the

triangles are equal, ha ring the three sides of the one,

respectively, equal to the three sides of the other.

That their planes are parallel, follows from Cor., Theo
rem 16.

THEOREM XVIII.

Any one of the three plane angles bounding a triedral

angle, is less than the sum of the other two.

Let A be the vertex of a solid angle, bounded by the

three plane angles, BAG, BAD, and DAC; then will any
one of these three angles be less than the sum of the



168 GEOMETRY.

other two. To establish this proposition, we have only
to compare the greatest of the three

angles with the sum of the other

two.

Suppose, then, BAG to be the

greatest angle, and draw in its plane B«

the line AE, making the angle
CAE equal to the angle CAD. On "iT

AE, take any point, E, and through it draw the line CEB.
Take AD, equal to AE, and draw BD and DC.

Now, the two triangles, CAD and CAE, having two

sides and the included angle of the one equal to the two

sides and included angle of the other, each to each, are

equal, and CE = CD; but in the triangle, BDC, BC<
BD + DC. Taking EC from the first member of this

inequality, and its equal, DC, from the second, we have,

BE < BD. In the triangles, BAE and BAD, BA is

common, and AE = AD by construction
; but the third

side, BD, in the one, is greater than the third side, BE,
in the other

; hence, the angle BAD is greater than the

angle BAE, (Th. 22, B. I); that is, [_BAE < [_BAD;
adding the \_EAC to the first member of this inequality,

and its equal, th.e.[_DAC, to the other, we. have

[_BAE+l_EAC< [_BAD + [_DAC.

And, as the [_BAG is made up of the angles BAE and

EAC, we have, as enunciated,

]_BAC< [_BAD + [_DAC.

THEOREM XIX.

The sum of the plane angles forming any solid angle, is

always less than four right angles.

Let the planes which form the solid angle at A, be cut

by another plane, which we may call the plane of the

base, BCDE. Take any point, a, in this plane, and draw

aBy aC, aD, aE, etc., thus making as many triangles on
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the plane of the base as there are tri-

angular planes forming the solid angle
A. Now, since the sum of the angles
of every A is two right angles, the sum
of all the angles of the A's which

have their vertex in A, is equal to the

Bum of all angles of the A's which have

their vertex in a. But, the angles BOA
+ AOD, are, together, greater than

the angles BOa + aOD, or BCD, by the last proposition.

That is, the sum of all the angles at the bases of the A's

which have their vertex in A, is greater than the sum of

all the angles at the bases of the A's which have their

vertex in a. Therefore, the sum of all the angles at a is

greater than the sum of all the angles at A
;
but the sum

of all the angles at a is equal to four right angles ;
there-

fore, the sum of all the angles at A is less than four right

angles.

THEOREM XX.

If two solid angles are formed by three plane angles respect-

ively equal to each other, the planes which contain the equal

angles will be equally inclined to each other.

Letthe [_ASC=the [_DTF,
the |_ASB= the [_ J> TE, and

the [_BSO= the [_ETF; then

will the inclination of the

planes, ASO, ASB, be equal
to that of the planes, DTF,
DTE.

Having taken SB at pleas-

are, draw BO perpendicular
to the plane ASO; from the point 0, at which that perpen-
dicular meets the plane, draw OA and 00, perpendicular
to SA and SO; draw AB and BO; next take TE = SB,
and draw EP perpendicular to the plane DTF; from the

15
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point P, draw PB and PF, perpendicular to TB and

TF; lastly, draw BE and FF.
The triangle SAB, is right-angled at A, and the tri-

angle TBF, at B, (Th. 5) ;
and since the |__ ASB = the

L J> TF, we have [_ SBA- L2^ J likewise, SB=TF;
therefore, the triangle SAB is equal to the triangle TBF)
hence, SA = TB, and AB = Di?. In like manner it

may be shown that SO = TF, and BO = J£F. That

granted, the quadrilateral SAOO is equal to the quadri-
lateral TBPF; for, place the angle ASO upon its equal,

2)2^, and because SA = 2'i), and SO= TF, the point A
will fall on i), and the point on F; and, at the same time,

A 0, which is perpendicular to SA, will fall on PB, which

is perpendicular to TB, and, in like manner, 00 on PF;
wherefore, the point will fall on the point P, and A
will be equal to BP. But the triangles, A OB, BPF, are

right angled at and P; the hypotenuse AB = BF, and

the side AO = BP; hence, those triangles are equal,

(Cor, Th. 39, B. I), and \_OAB=[_PBF. The angle OAB
is the inclination of the two planes, ASB, ASO; the angle
PBF is that of the two planes, BTF, BTF; conse-

quently, those two inclinations are equal to each other.

Hence the theorem.

Scholium 1.— The angles which form the solid angles at S and T,

may be of such relative magnitudes, that the perpendiculars, BO and

EP, may not fall within the bases, ASC and DTF; but they will

always either fall on the bases, or on the planes of the bases produced,

and will have the same relative situation to A, S, and C, as P has

to D, T, and F. In case that and P fall on the planes of the bases

produced, the angles BCO and EFP, would be obtuse angles ;
but the

demonstration of the problem would not be varied in the least.

Scholium 2.— If the plane angles bounding one of the triedral

angles be equal to those of the other, each to each, and also be simi

larly arranged about the triedral angles, these solid angles will be ab-

solutely equal. For it was shewn, in the course of the above demon-

stration, that the quadrilaterals, SAOC and TDPF, were equal; and

on being applied, the point falls on the point P; and since the trian-

gles AOB and DPE are equal, the perpendiculars OB and PE ar«
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ilsc equal. Now, because the plane angles are like arranged about

the triedral angles, these perpendiculars lie in the same direction ;

hence the point B will fall on the point \E, and the solid angles
will exactly coincide.

Scholium 3.—When the planes of the equal angles are not like dis-

posed about the triedral angles, it would not be possible to make these

triedral angles coincide ; and still it would be true that the planes of

the equal angles are equally inclined to each other. Hence, these

triedral angles have the plane and diedral angles of the one, equal to

the plane and diedral angles of the other, each to each, without having
of themselves that absolute equality which admits of superposition.

Magnitudes which are thus equal in all their component parts, but

will not coincide, when applied the one to the other, are said to be

symmetrically equal. Thus, two triedral angles, bounded by plane

fcngbs equal each to each, but not like placed, are symmetrical triedral
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BOOK VII,

SOLID GEOMETRY.

DEFINITIONS.

1. A Polyedron is a solid, or volume, bounded on all

sides by planes. The bounding planes are called the

faces of the polyedron, and then intersections are its

edges,

2. A Prism is a polyedron, having two of its faces,

called bases, equal polygons, whose planes and homolo-

gous sides are parallel. The other, or lateral faces, are

parallelograms, and constitute the convex surface of the

prism.
The bases of a prism are distinguished by the terms,

upper and lower; and the altitude of the prism is the per

pendicular distance between its bases.

Prisms are denominated triangular, quadrangular, pent

angular, etc., according as their bases are triangles, quad-

rilaterals, pentagons, etc.

3. A Right Prism is one in which the planes of the

lateral faces are perpendicular to the planes of the bases.

4. A Parallelopipedon is a prism
whose bases are parallelograms.

5. A Rectangular Parallelopipedon

is a right parallelopipedon, with

rectangular bases.
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6. A Cube or Hexaedron is a rectangu-
lar parallelopipedon, whose faces are all

equal squares.

7. A Diagonal of a Polyedron is a straight

line joining the vertices of two solid

angles not adjacent.

8. Similar Polyedrons are those which

are bounded by the same number of similar polygons

like placed, and whose homologous solid angles are

equal.

Similar parts, whether faces, edges, diagonals, or

angles, similarly placed in similar polyedrons, are termed

homologous.

9. A Pyramid is a polyedron, having
for one of its faces, called the base, any

polygon whatever, and for its other faces

triangles having a common vertex, the

sides opposite which, in the several trian-

gles, being the sides of the base of the

pyramid.

10. The Vertex of a pyramid is the

common vertex of the triangular faces.

U. The Altitude of a pyramid is the perpendicular
distance from its vertex to the plane of its base.

12. A Right Pyramid is one whose base is a regular

polygon, and whose vertex is in the perpendicular to the

base at its center. This perpendicular is called the axis

of the pyramid.
13. The Slant Height of a right pyramid is the perpen-

dicular distance from the vertex to one of the sides of

the base.

14. The Frustum of a Pyramid is a portion of the pyr-
amid included between its base and a section made by a

plane parallel to the base.

Pyramids, lik* prisms, are named from the forms of

their bases.

15*
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15. A Cylinder is a body, having for

its ends, or bases, two equal circles,

the planes of which are perpendicular
to the line joining their centers

;
the

remainder of its surface may be con-

ceived as formed by the motion of a

line, which constantly touches the cir-

cumferences of the bases, while it

remains parallel to the line which

joins their centers.

We may otherwise define the cylinder as a body gen-
erated by the revolution of a rectangle about one of its

sides as an immovable axis.

The sides of the rectangle perpendicular to the axis

generate the bases of the cylinder; and the side opposite

the axis generates its convex surface. The line joining
the centers of the bases of the cylinder is its axis, and is

also its altitude.

If, within the base of a cylinder, any polygon be in-

scribed, and on it, as a base, a right prism be con-

structed, having for its altitude that of the cylinder, such

prism is said to be inscribed in the cylinder, and the cylin-

der is said to circumscribe the prism.

Thus, in the last figure, ABODEc is an inscribed

prism, and it is plain that all its lateral edges are con-

tained in the convex surface of the cylinder. d

If, about the base of a cylinder, any

polygon be circumscribed, and on it,

as a base, a right prism be con-

structed, having for its altitude that

of the cylinder, such prism is said to

be circumscribed about the cylinder, and
the cylinder is said to be inscribed in

the prism.

Thus, ABCLEFc is a circum-

scribed prism; and it is plain that
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the lino, mn, which joins the points of

tangency of the sides, EF and ef, with

the circumferences of the bases of the

cylinder, is common to the convex sur-

faces of the cylinder and prism.

16. A Cone is a body bounded by a

circle and the surface generated by the

motion of a straight line, which con-

stantly passes through a point in the

perpendicular to the plane of the circle

at its center, and the different points in

its circumference.

The cone may be otherwise' defined as a body gene
rated by the revolution of a right-angled triangle about

one of its sides as an immovable axis. The other side

of the triangle will generate the base of the cone, while

the hypotenuse generates the convex surface.

The side about which the generating triangle revolves

is the axis of the cone, and is at the same time its altitude.

If, within the base of the cone, any

polygon be inscribed, and on it, as a

base, a pyramid be constructed, having
for its vertex that of the cone, such

pyramid is said to be inscribed in the

cone, and the cone is said to circumscribe

the pyramid.

Thus, in the accompanying figure,

V—ABODE, is an inscribed pyramid,

and it is plain that all its lateral edges
are contained in the convex surface of

the cone.

If, about the base of a cone, any poly-

gon be circumscribed, and on it, as a

base, a pyramid be constructed, having
for its vertex that of the cone, such pyramid is said to be

circumscribed about the cone, and the cone is said to be

inscribed in the pyramid.



176 GEOMETRY.

17. The Frnstnm of a Cone is the portion of the cone that

is included between its base and a section made by a plane

parallel to the base.

18. Similar Cylinders, and also Similar Cones, are such as

have their axes proportional to the radii of their bases.

19. A Sphere is a body bounded by one uniformly-curved

surface, all the points of which are at the same distance

from a certain point within, called the center.

We may otherwise define the sphere as a body gene-
rated by the revolution of a semicircle about its diameter

as an immovable axis.

20. A Spherical Sector is that

portion of a sphere which is in-

cluded between the surfaces of

two cones having a common

axis, and their vertices at the

center of the sphere. Or, it is

that portion of the sphere which

is generated by a sector of the

generating semicircle.

21. The Radius of a Sphere is

a straight line drawn from the

center to any point in the surface
;
and the diameter is

a straight line drawn through the center, and limited on
both sides by the surface.

All the diameters of a sphere are equal, each being
twice the radius.

22. A Tangent Plane to a sphere is one which has a

single point in the surface of the sphere, all the others

being without it.

23. A Secant Plane to a sphere is one which has more
than one point in the surface of the sphere, and lies

partly within and partly without it.

Assuming, what will presently be proved, that the in-

tersection of a sphere by a plane is a circle,

24. A Small Circle of a sphere is one whose plane does

not pass through its center; and
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25. A Great Circle of a sphere is one whose plane passes

through the center of the sphere.

26. A Zone of a sphere is the portion of its surface in-

cluded between the circumferences of any two of its paral-

lel circles, called the bases of the zone. "When the plane

of one of these circles becomes tangent to the sphere, the

zone has a single base.

27. A Spherical Segment is a portion of the volume of a

sphere included between any two of its parallel circles,

called the bases of the segment.
The altitude of a zone, or of a segment, of a sphere,

is the perpendicular distance between the planes of its

bases. \

28. The area of a surface is measured by the product

of its length and breadth, and these dimensions are always

conceived to be exactly at right angles to each other.

29. In a similar manner, solids are measured by the

product of their length, breadth, and height, when all their

dimensions are at right angles to each other.

The product of the length and breadth ©f a solid, is

the measure of the surface of its base.

Let P, in the annexed fig-

ure, represent the measuring

unit, and AF the rectangular
solid to be measured.

A side of P is one unit in

length, one in breadth, and

one in height; one inch, one

foot, one yard, or any other unit that may be taken.

Then, lxlxl 1, the unit cube.

Now, if the base of the solid, AC, is, as here repr<
•

sented, 5 units in length and 2 in breadth, it is obvious

that (5x2 = 10), 10 units, each equal to P, can be placed
on the base of AC, and no more; and as each of these

onits will occupy a unit of altitude, therefore, 2 units of

M



178 GEOMETRY.

altitude will contain 20 solid units, 3 units of altitude,

30 solid units, and so on
; or, in general terms, the num-

ber of square units in the base multiplied by the linear units

in perpendicular altitude, will give the solid units in any rect-

angular solid.

THEOREM I.

If the three plane faces bounding a solid angle of one prism
be equal to the three plane faces bounding a solid angle of

another, each to each, and similarly disposed, the prisms will

be equal.

Suppose A and a to be the vertices of two solid angles,
bounded by equal and similarly placed faces; then will

the prisms, ABODE—-i^and abcde—n, be equal.

For, if we place the base,

abcde, upon its equal, the base

ABODE, they will coincide;

and since the solid angles,

whose vertices are A and a, are

equal, the lines ab, ae, and ap,

respectively coincide with AB,
AE, and AP

;
but the faces, al and ao, of the one prism,

are equal, each to each, to the faces, AL and AO, of the

other; therefore pi and po coincide with PL and PO,
and the upper bases of the prisms also coincide : hence,

not only the bases, but all the lateral faces of the two

prisms coincide, and the prisms are equal.

Oor. If the two prisms are right, and have equal bases

and altitudes, they are equal. For, in this case, the rect-

angular faces, al and ao, of the one, are respectively

equal to the rectangular faces, AL and AO, of the other;

and hence the three faces bounding a triedral angle in

the one, are equal and like placed, to the faces bounding
a triedral angle in the othei
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THEOREM II.

The opposite faces of any parattelopipedon axe equal, and

their planes are parallel.

Let ABOD—E be any parallelopipedon ;
then will its

opposite faces be equal, and their planes will be parallel.

The bases ABOD and FEGH are

equal, and their planes are parallel,

by definitions 2 and 4 of this Book
;

it remains tor us, therefore, only to

show that any two of the opposite

lateral faces are equal and parallel.

Since all the faces of the parallelopipedon are parallel-

ograms, AB is equal and parallel to DC, and AH is also

equal and parallel to DF; hence the angles HAB and

FDO are equal, and their planes are parallel, (Th. 17, B.

VI), and the two parallelograms, HABGr and FDCE,
having two adjacent sides and the included angle of the

one equal to the two adjacent sides and included angle

of the other, are equal.

Oor. 1 Hence, of the six faces of the parallelopipedon,

any two lying opposite may be taken as the bases.

Cor. 2. The four diagonals of a parallelopipedon mutu-

ally bisect each other. For, if we draw A and HE, we
shall form the parallelogram A OEH, of which the diago-

nals are AE and HO, and these diagonals are at the same

time diagonals of the parallelopipedon; but the diagonals

of a parallelogram mutually bisect each other. Now, if

the diagonal FB be drawn, it and HO will bisect each

other, since they are diagonals 'of the parallelogram

FHBO. In like manner we can show that if DGr be

drawn, it will be bisected by AE. Hence, the four diag-

onals have a common point within the parallelopipedon.

Scholium.— It is seen at once that the six faces of a parallelopipe-

don intersect each other in twelve edges, four of which are equal to

HA, four to AB, and four to AD. Now, we may conceive the parallel-

opipedon to be bounded by the planes determined by the three lines
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AH, AB, and AD, and the three planes passed through the extremi*

ties, H, B, and JD, of these lines, parallel to the first three planes.

THEOREM III.

The convex surface of a right prism is measured by the

perimeter of its base multiplied by its altitude.

Let ABODE— iVbe a right prism, of

which AP is the altitude ;
then will its

convex surface he measured by

{AB + BO+ OB + DE + EA)xAP.
For, its convex surface is made up of the

rectangles AL, BM, ON, etc., and each

rectangle is measured by the product of

its base by its altitude
;
but the altitude

of each rectangle is equal to AP, the alti-

tude of the prism ;
hence the convex sur-

face of the prism is measured by the pro-

duct of the sum of the bases of the rectangles, or the

perimeter of the base of the prism, by the common alti-

tude, AP.
Oor. Kight prisms will have equivalent convex surfaces,

when the products of the perimeters of their bases by
their altitudes are respectively equal ; and, generally, their

convex surfaces will be to each other as the products of

the perimeters of their bases by their altitudes. Hence,

if the altitudes are equal, their convex surfaces will be as

the perimeters of their bases
;
and if the perimeters of

their bases are equal, the^r convex surfaces will be as

their altitudes.

THEOREM IV.

The two sections of a prism made by parallel planes between

its bases are equal polygons.

Let the prism ABODE—N be cut between its bases

by two parallel planes, making the sections QBS, etc..
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and TVX, etc.
;
then will these sections

be equal polygons.

For, since the secant planes are paral-

lel, their intersections, QR and TV, by
the plane of the face JEAPO are parallel,

(Th. 9, B. VI) ;
and being included be-

tween the parallel lines, AP and EO, they

are also equal. In the same manner we

may prove that BS is equal and parallel

to VX, and so on for the intersections of

the secant planes by the other faces of

the prism. Hence, these polygonal sections have the

sides of the one equal to the sides of the other, each to

each. The angles QBS and TVX are equal, because

their sides are parallel and lie in the same direction
;
and

in like manner we prove [__ RSY = [_ VXZ, and so on

for the other corresponding angles of the polygons.

Therefore, these polygons are both mutually equilateral

and mutually equiangular, and consequently are equal.

Cor. A section of a prism made by a plane parallel to

the base of the prism, is a polygon equal to the base.

THEOKEM V.

Two parallelopipedons, the one rectangular and the other

oblique, will be equal in volume when, having the same base

and altitude, two opposite lateral faces of the one are m the

'planes of the corresponding lateral faces of the other.

Designating the parallelo-

pipedons by their opposite

diagonal letters, let AG be

the rectangular, and AL the

obnque, parallelopipedon, hav-

ing the same base, A C, and

the same altitude, namely,
the perpendicular distance be-

16
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tween the parallel pranes, AC and EL. Also let the fa^e,

AK, be in the plane of the face, AF, and the face, BL, m
the plane of the face, BG. We are now to prove that the

oblique parallelopipedon is equivalent to tne rectangular

parallelopipedon.
As the faces, AF and AK, are in the same plane, and

the parallelopipedons have the same altitude, EFK is a

straight line, andEF— IK, because each is equal to AB.
If from the whole line, FK, we take FF, and then from

the same line we take IK= FF, we shall have the re-

mainders, FI and FK, equal ;
and since AF and BF are

parallel, \_AFI = [_BFK ;
hence the A's, AFI and

BFK, are equal. Since HE and MI are both parallel to

DA, they are parallel to each other, and FIMH is a par-

allelogram ;
for like reasons, FKLG is a parallelogram,

and these parallelograms are equal, because two adjacent
sides and the included angle of the one are equal to two

adjacent sides and the included angle of the other. The

parallelograms, BE and CF, being the opposite faces of

the parallelopipedon, AG-, are equal. Hence, the three

plane faces bounding the triedral angle, E, of the triaii*

gular prism, EAI— E, are equal, each to each, and like

placed, to the three plane faces bounding the triedral angle

F, of the triangular prism, FBK— G, and these prisms
are therefore equal, (Th. 1). Now, if from the whole

solid, EABK—H, we take the prism, EAI—H, there

will remain the parallelopipedon, AL; and, if from the

srme solid, we take the prism, FBK—G, there will remain

the rectangular parallelopipedon, AG. Therefore, the

oblique and the rectangular parallelopipedons are equiva-

lent.

Cor. The volume of the rectangular parallelopipedon,

AG, is measured by the base, ABCB, multiplied by the

altitude, AF, (Def. 29) ; consequently, the oblique paral-

lelopipedon is measured by the product of the same base

by the same altitude.
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Scholium.- -If neither of the parallelopipedons is rectangular, but

they still have the same base and the same altitude, and two opposite

lateral faces of the one are in the planes of the corresponding lateral

faces of the other, by precisely the same reasoning we could prove the

parallelopipedons equivalent. Hence, in general, any two parallelo-

pipedons will be equal in volume when, having the same base and aUtiPude,

two opposite lateral faces of the one are in the planes of the correspond-

ing lateral faces of the other,

THEOREM VI.

Two parallelopipedons having equal bases and equal alti-

tudes^ are equivalent.

Let A G- and AL be two paral-

lelopipedons, having a common
lower base, and their upper bases

in the same plane, HF. Then
will these parallelopipedons be

equivalent.

Since their upper bases are in

the same plane, and the lines IM and KL are par-

allel, and also EF and HG, these lines will intersect,

when produced, and form the parallelogram NOPQ,
which will be equal to the common lower base of

the two parallelopipedons. Now, if a third parallelo-

pipedon be constructed, having BD for its lower base,

and OQ for its upper base, it will be equivalent to the par-

allelopipedon AG, and also to the parallelopipedon AL,

(Th. 5, Scholium) ; hence, the two given parallelopipe-

dons, being each equivalent to the third parallelopipe-

don, are equivalent to each other.

Hence, two parallelopipedons having equal bases, etc.

THEOREM VII.

The volume of any parallelopipedon is measured by the

product of its base and altitude, or the product of its three

dimensions.
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Let ABCD—Gr be any parallelopipedon ;
tl en will its

volume be expressed by the product ^_h

of tbe area of its base and altitude. hj
If the parallelopipedon is oblique, l/

we may construct on its base a right

parallelopipedon, by erecting perpen-
diculars at the points A, B, 0, and D,
and making them each equal to the

altitude of the given parallelopipedon ;

and the right parallelopipedon, thus

constructed, will be equivalent to the given parallelopip-

edon, (Th. 6). Eow, if the base, ABOD, is a rectangle,

the new parallelopipedon will be rectangular, and meas-

ured by the product of its base and altitude, (Def. 29).

But if the base is not rectangular, let fall the perpen-

diculars, Be and Ad, on CD and CD produced, and take

the rectangle ABcd for the base of a rectangular paral-

lelopipedon, having for its altitude that of the given

parallelopipedon. "We may now regard the rectangular

face, ABFE, as the common base of the two parallelo-

pipedons, Ag and AG-', and, as they have a common

base, and equal altitude, they are equivalent. Thus we
have reduced the oblique parallelopipedon, first to an

equivalent right parallelopipedon on the same base, and

then the right to an equivalent rectangular parallelopip-

edon on an equivalent base, all having the same alti-

tude. But the rectangular parallelopipedon, Ag, is

measured by product of its base, ABcd, and its altitude;

hence, the given and equivalent oblique parallelopipedon

is measured by the product of its equivalent base and

equal altitude.

Hence, the volume of any parallelopipedon, etc.

Cor. Since a parallelopipedon is measured by the pro-

duct of its base by its altitude, it follows that parallelo

pipedons of equivalent bases, and equal altitude?, are equiva

lent, or equal in volume.
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THEOREM VIII.

Parallelopipedons on the same, or equivalent hoses, are to

each other as their altitudes ; and parallelopipedons having

equal altitudes, are to each other as their bases.

Let P and p represent two parallelopipedons, whose

bases are denoted by B and b, and altitudes by A and a,

respectively.

Now, P = B x A, and p = b x a, (Th. 7).

But magnitudes are proportional to their numerical

measures ;
that is,

P : p :: B x A : b X a.

If the bases of the parallelopipedons are equivalent,

we have B — b; and if the altitudes are equal, we have

A = a. Introducing these suppositions, in succession,

in the above proportion, we get

P : p :: A : a,

and P : p : : B : b.

Hence the theorem
; Parallelopipedons on the same, etc,

THEOREM IX.

Similar parallelopipedons are to each other as the cubes of

their like dimensions.

Let P and p represent any two similar parallelopipe-

dons, the altitude of the first being denoted by h, and

the length and breadth of its base by I and n, respect-

ively; and let h', V, and nr

,
in order, denote the correeh

ponding dimensions of the second.

Then we are to prove that

P : p :: n8
: n" :: I* : V* :: hn

: h'\

We have

P = Inh, and p - Vn'K* (Th. 7) ;

and by dividing the first of these equations by the

second, member by member, we get
16*
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P _ Inh

J~~ I'n'h''

which, reduced to a proportion, gives

P : p :: Inh : Vn'Jt.

But, by reason of the similarity of the patallelopipo

dons, we have the proportions
I if : ; n : n'

h : h1
: : n : n'

;

we have also the identical proportion,

n : n' : : n : n' .

By the multiplication of these proportions, term by

term, we get, (Th. 11, B. II),

Inh : l'n
fhf

: : n* : nn .

That is, P : p : : n* : ri\

By treating in the same manner the three proportions,

I : V : : h : h'

n : n r
: : h : hr

h : h' : : h : h f

,

we should obtain the proportion
P : p :: h* : h";

and, by a like process, the three proportions,

h : h' : : I : V

n : n' : : I : V

I : V :: I : I',

will give us the proportion
P : p :: I* : V\

Hence the theorem ;
similar parallelopipedons are to each

other, etc.

THEOREM X.

The two triangular prisms into which any parallelopipedon

is divided, by a plane passing through its opposite diagonal

edges, are equivalent.

Let ABCD—F be a parallelopipedon, and through

the diagonal edges, BF and DH, pass the plane BH. divi-

ding the parallelopipedon into the two triangular prisms.
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ABB-E and BCB—G ;
then we are to prove that these

prismsan equivalent. Letus divide

the diagonal, BB, in which the se-

cant plane intersects the base ofthe

parallelopipedon, into three equal

parts, a and c being the points of

division. In the base,ABCD, con-

struct the complementary paral-

lelograms, aC and aA, and in the

parallelogram, badD, construct the

complementary parallelograms,

cd and cb, and conceive these, to-

gether with the parallelograms,

Ba, ac, cB, to be the bases of

smaller parallelopipedons, having
their lateral faces parallel to the

lateral faces of, and their altitude equal to the altitude of,

the given parallelopipedon, A Gr.

Now it is evident that the triangular prism, BCD— Gr,

is composed of the parallelopipedons on the bases, a

and cd, and the triangular prisms, on the side of the

secant plane with this prism, into which this plane divides

the parallelopipedons on the bases, Ba, ac, and cB. The

triangular prism, ABB—E, is also composed of the par-

allelopipedons on the bases, Aa and be, together with the

triangular prisms on the side of the secant plane with

this prism, into which this plane divides the parallelopip-

edons on the bases, Ba, ac, and cD.

But the parallelograms, a and aA, being complement-

ary, are equivalent, (Th. 31, B. I) ;
and for the same

reason the parallelograms, cd and cb, are equivalent ;
and

since parallelopipedons on equivalent bases and of equal

altitudes, are equivalent, (Cor., Th. 7), we have the sum
of parallelopipedons on bases a and cd, equivalent to

the sum of parallelopipedons on the bases, aA and cb.

Hence, the triangular prisms, ABB—E and BOB — Gr,



188 GEOMETRY.

differ in volume only by the difference which may exist

between the sums of the triangular prisms on the two

Bides of the secant plane into which this plane divides

the parallelopipedons on the bases, Ba, ac, and cd.

Now, if the number of equal parts into which the diag-

onal is divided, be indefinitely multiplied, it still holds

true that the triangular prisms, ABB—B and BOB— 6r,

differ in volume only by the difference between the sums

of the triangular prisms on the two sides of the secaLt

plane into which this plane divides the parallelopipedons
constructed on the bases whose diagonals are the equal

portions of the diagonal, BB. But in this case the sum
of these parallelopipedons themselves becomes an indefi-

nitely small part of the whole parallelopipedon, A Cr, and

the difference between the parts of an indefinitely small

quantity must itself be indefinitely small, or less than

any assignable quantity. Therefore, the triangular

prisms, ABB—B and BOB— Gr, differ in volume by less

than any assignable volume, and are consequently equiv-

alent.

Hence the theorem
;
the two triangular prisms into which,

etc.

Cor. 1. Any triangular prism, as ABB— B, is one half

the parallelopipedon having the same triedral angle, A,
and the same edges, AB, AB, and AB.

Cor. 2. Since the volume of a parallelopipedon is meas-

ured by the product of its base and altitude, and the tri-

angular prisms into which it is divided by the diagonal

plane, have bases equivalent to one half the base of the

parallelopipedon, and the same altitude, it follows that,

the volume of a triangular prism is measured by the product

of its base and altitude.

The above demonstration is less direct, but is thought
to be more simple, than that generally found in authors,

and which is here given aa a
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Second Demonstration

Let ABCD—F be a parallelo-

pipedon, divided by the diagonal

plane, BH, passing through the

edges, BF and BR; then we are

to prove that the triangular

prisms, ABB—E and BQD—G,
thus formed, are equivalent.

Through the points B and F,

pass planes perpendicular to the

edge, BF, and produce the late-

ral faces of the parallelopipedon
to intersect the plane through B ;

then the sections Bcda and Fghe
are equal parallelograms. For, since the cutting planea
are both perpendicular to BF, they are parallel, (Th. 10,

B. VI) ;
and because the opposite faces of a parallelo-

pipedon are in parallel planes, (Th. 2), and the intersec-

tions of two parallel planes by a third plane are parallel,

(Th. 9, B. VI), the sections, Bcda and Fghe, are equal

parallelograms, and may be taken as the bases of the

right parallelopipedon, Bcda—h. But the diagonal plane
divides the right parallelopipedon into the two equal tri-

angular prisms, aBd—e and Bed—g, (Th. 1). We will

now compare the right prism with the oblique triangular

prism on the same side of the diagonal plane.

The volume ABD— e is common to the two prisms,

ABD—F xnd aBd—e
;
and the volume eFh—F, which,

added to this common part, forms the oblique triangular

prism, is equal to the volume aBd—A, which, added to

the common part, forms the right triangular prism. For,

since ABFF and aBFe are parallelograms, AF= ae, and

taking away the common part Ae, we have aA—eF; and

since BFHD and BFhd are parallelograms, we have DE
= dh

;
and from these equals taking away the common

part. Dh, we have dD = hE. Now, if the volume eFh—H
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be applied to the volume aBd— B, the base eFh falling

on the equal base aBd, the edges eE and hH will fall

upon aA and dB respectively, because they are perpen-
dicular to the base aBd, (Cor. 2, Th. 3, B. VI), and the

point E will fall upon the point A, and the pointH upon
the point B ;

hence the volume eFh—H exactly coincides

with the volume aBd— B, and the oblique triangular

prisrr. ABB—E is equivalent to the right triangular

prism aBd—e.

In the same manner, it may be proved that the oblique

triangular prism, BQBOr, is equivalent to the right tri-

angular prism, Bcdg. The oblique triangular prism on

either side of the diagonal plane is, therefore, equivalent
to the corresponding right triangular prism ; and, as the

two right triangular prisms are equal, the oblique trian-

gular prisms are equivalent.

Hence the theorem
;

the two triangular prisms, etc.

THEOREM XI.

The volume of any prism whatever is measured by the prod*

net of the area of its base and altitude.

For, by passing planes through the homologous diag-

onals of the upper and lower bases of the prism, it will

be divided into a number of triangular prisms, each of

which is measured by the product of the area of its base

and altitude. Now, as these triangular prisms all have,

for their common altitude, the altitude of the given

prism, when we add the measures of the triangular

prisms, to get that of the whole prism, we shall have,

for this measure, the common altitude multiplied by the

sum of the areas of the bases of the triangular prisms :

that is, the product of the area of the polygonal base

and the altitude of the prism.
Hence the theorem

;
the volume of any prism, etc.

Cor. If A denote the area of the base, and H the alti»
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hide of a prism, its volume will be expressed by A X 11.

Calling this volume V, we have

Denoting by A', W, and V, in order, the area of the

base, altitude, and volume of another prism, we have

V = A 1 x Hf
.

Dividing the first of these equations by the second,
u ember by member, we have

YL A x H
V

'

A' x R' y

which gives the proportion,

V : V : : A x H : A 1 x H'.

If the bases are equivalent, this proportion becomes

V : V : : H : H'
;

anl if the altitudes are equal, it reduces to

V : V : : A : A'.

Hence, prisms of equivalent bases are to each other as

their altitudes; and prisms of equal altitudes are to each other

as their bases.

THEOREM XII.

A plane passed through a pyramid parallel to its base,

divides its edges and altitude proportionally, and makes a

section, which is a polygon similar to the base.

Let ABODE—V be any pyramid, whose base is in the

plane, MN, and vertex in the parallel plane, mn ;
and let

a plane be passed through the pyramid, parallel to its

base, cutting its edges at the points, a b, c
} d, e, and the

altitude, EF, at the point I. By joining the points, a, J,

c, etc., we have the polygon formed by the intersection

of the plane and the sides of the pyramid. Eow, we are

to prove that the edges, VA, VB, etc., and the altitude,

FE, are divided proportionally at the points, a, b, etc.,

and I; and that the polygon, a, b, c, d, e, is similar to the

base of the pyramid.
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bince the cutting plane is parallel to the base of the

pyramid, ab is parallel to AB, (Th. 9, B. VI) ;
for the

same reason, bo is parallel to BO, cd to OB, etc. Now,
in the triangle VAB, because ab is parallel to the base

AB, we have, (Th. 17, B. II), the proportion,

VA : Va : : VB : Vb.

In like manner, it may be shown that

VB : Vb : : VO : Vc,

and so on for the other lateral edges of the pyramid. F
being the point in which the perpendicular from F pierces

tbe plane mn, and I the point in which the parallel secant

plane cuts the perpendicular, if we join the points F and

V, and also the points I and e by straight lines, we have

in the triangle FFV, the line le parallel to the base FV;
hence the proportion

VF : Ve :: FF : Fl

Therefore, the plane passed through the pyramid par-

allel to its base, divides the altitude into parts which have
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to each other the same ratio as the parts into which it

divides the edges.

Again, since ab is parallel to AB, and be to BO, the

angle abc is equal to the angle ABC, (Th. 17, B. VI.) ;
in

the same manner we may show that each angle in the

polygon, abode, is equal to the corresponding angle in the

polygon, ABODE-, therefore these polygons are mutually

equiangular. But, because the triangles VBA and Vba

are similar, their homologous sides give the proportion

Vb : VB :: ah : AB;
and because the triangles Vbc and VBO are similar, we
also have the proportion

Vb : VB :: be : BO.

Since the first couplets in these two proportions are the

same, the second couplets are proportional, and give

ab : AB : : be : BO.

By a like process, we can prove that

be : BO :: ed : OD,

and that cd : CD :: de : DE,
and so on, for the other homologous sides of the two

polygons.

Hence, the two polygons are not only mutually equi-

angular, but the sides about the equal angles taken in the

same order are proportional, and the polygons are there-

fore similar, (Def. 16, B. II).

Hence the theorem; a plane passed through a pyramid,
etc.

Cor, 1. Since the areas of similar polygons are to each

other as the squares of their homologous sides, (Th. 22,

B. H), we have

area abode : area ABODE i ab* i AB*.

But, ab : AB :: Va : VA :: Fl : FE;

hence, ab* : AB 2

:: jf : FE*:

therefore, area abode : area ABODE : Fl* : FE*.

17 N
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That is, the area of a section parallel to the base of a

pyramid, is to the area of the base, as the square of the

perpendicular distance from the vertex of the pyramid to

the section, is to the square of the altitude of the pyramid.

Cor. 2. Let V—ABODE and X—RST be two pyra-

mids, having their bases in the plane MN, and their ver-

tices in the parallel plane mn ;
and suppose a plane to be

passed through the two pyramids parallel to the common

plane of their bases, making in the one the section abode,

and in the other the section rsL

Kow,areaABODE: area abode : :AB
2

: ab\ (Th.22,B.II),

and " EST: "
rst ::~M

2

:r~s~\

But, AB : ab : : VB : Vb,

and BS : rs : : XR : Xr.

Because the plane which makes the sections is parallel

to the planes MN and mn, we have, (Th. 11, B. YI),

VB : Vb :: XR : Xr;

therefore, (Cor. 2, Th. 6, B. II), AB :ab::RS: rs.

By squaring, AB 2

: ab
2

: RS 2

: rs
2

;

hence, area ABODE : area abode : : area RST : area* rst.

That is, if two pyramids having equal altitudes, and their

bases in the same plane, be cut by a plane parallel to the com*

mon plane of their bases, the areas of the sections will be

proportional to the areas of the bases ; and if the bases are

equivalent, the sections will also be equivalent.

THEOREM XIII.

If two triangular pyramids have equivalent bases and

equal altitudes, they are equal in volume.

Let V—ABO and v—abc be two triangular pyramids,

having the equivalent bases, ABO and abc, and let the

altitude of each be equal to OX; then will these two

pyramids be equivalent.
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and the volume of the pyramid will exceed the sum of

the volumes of the prisms.
Since the sum of the exterior prisms, constructed in

connection with the pyramid V—ABO, is greater than

the pyramid, and the sum of the interior prisms, con-

structed in connection with the pyramid v—abc, is less

than this pyramid, it follows that the difference of these

eums is greater than the difference of the pyramids them-

selves. But the second exterior prism, or that on the

base DEF, is equivalent to the first interior prism, or

that on the base def, and the third exterior prism is

equivalent to the second interior prism, (Th. 10, Cor. 2),

and so on. That is, beginning with the second prism from

the base of the pyramid, V—ABO, and taking these

prisms in order towards the vertex of the pyramid, and

comparing them with the prisms in the pyramid, v—abc,

beginning with the lowest, and taking them in order

toward the vertex of this pyramid, we find that to each

exterior prism of the pyramid, V—ABO, exclusive of

the first or lowest, there is a corresponding equivalent
interior prism in the pyramid, v—abc.

Hence the prism, ABODFF, is the difference between

the sum of the prisms constructed in connection with

the pyramid, V—ABO, and the sum of the interior

prisms constructed in the pyramid, v—abc. But the, first

sum being a volume greater than the pyramid, V—ABO,
and the second sum a volume less than the pyramid,
v—abc, it follows that the volumes of the pyramids differ

by less than the prism, ABOBEF.
Now, however great the number of equal parts into

which the altitude, OX, be divided, and the correspond-

ing number of prisms constructed in connection with

each pyramid, it would still be true that the difference

between the volumes of the pyramids would be less than

the volume of the lowest prism of the pyramid V—ABO;
Dutwhenwe make the number of equal parts into which
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the altitude is divided indefinitely great, the vok me ot

this prism becomes indefinitely small : that is, the differ-

ence between the volumes of the pyramids is less thau

an indefinitely small volume
; or, in other words, there

is no assignable difference between the two pyramids,
and they are, therefore, equivalent.

Ilence the theorem ; if two triangular pyramids, etc.

THEOREM XIV.

Any triangular pyramid is one third of the triangul xr

prism having the same base and equal altitude.

Let F—ABO be a triangular pyramid, and througa F
pass a plane parallel to the plane of the base, ABO. Iu

this plane, through F, construct the

triangle, FDE, having its sides, FD, E

DE, and EF, parallel and equal to BO, /^T ~~7\

OA, and AB, respectively. The tri- / 0>\ /

angle, FDE, may be taken as the / /h\
upper base of a triangular prism of 'I 'V
which the lower base is ABO. "\. ~\/
Now, this triangular prism is com- b

posed of the given triangular pyramid,
F—ABO, and of the quadrangular p/ramid, F—AODE.
This last pyramid may be divided by a plane through the

three points, 0, F, and F, into tha two triangular pyra-

mids, F—DEO and F—AOE. But the pyramid, J7—
DEO, may be regarded as h^ing the triangle, EFD,
equal to the triangle, ABO, for its base, and the point, 0,

for its vertex. The two pyramids, F—ABO and —DEF,
have equal bases and equal altitudes

; they are therefore

equivalent, (Th. 13). Again, the two pyramids, F—DEO
andF—AOE

}
have a common vertex, and equivalent bases

in the same plane, and they are also equivalent. There-

fore, the triangular prism, ABODEF, is composed of

n*
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three *tpiv«dent triangular pyramids, one of which is the

given triangular pyramid, F—ABC.
Hetice the theorem

; any triangular pyramid is one third

of the triangular prism, etc.

Cor. The volume of the triangular prism heing meas-

ured hy the product of its hase and altitude, the volume of

a triangular pyramid is measured by one third of the product

of its base and altitude.

THEOREM XV.

The volume of any pyramid whatever is measured by one

third of the product of its base and altitude.

Let V—ABCDE be any pyramid ; then will its volume

be measured by one third of the product of its base and

altitude.

In the base of the pyramid, draw the

diagonals, AD and A C, and through
its vertex and these diagonals, pass

planes, thus dividing the pyramid into

a number of triangular pyramids

having the common vertex F", and the

altitude of the given pyramid for their

common altitude.

Now, each of these triangular pyra-

mids is measured by one third of

the product of its base and altitude,

(Cor., Th. 14), and their sum, which

constitutes the polygonal pyramid, is

therefore measured by one third of

the product of the sum of the trian-

gular bases and the common altitude
;
but the sum of the

triangular bases constitutes the polygonal base, ABCDE.
Hence the theorem ;

the volume of any pyramid what-

ever, etc.

Cor. 1. Denote, by B, ff, and V, respectively, the base,

altitude, and volume of one pyramid, and by B'
f IF, and
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P, the base, altitude, and volume of another
;
then we

Bhall have

and V = i'B
f x W.

Dividing the first of these equations by the second,

member by member, we have

V _ B x E
V B f x E'

9

which, in the form of a proportion, gives

V : V : : B X E : B' x E>.

From this proportion we deduce the following conse-

quences :

1st. Pyramids are to each other as the products of their

bases and altitudes.

2d. Pyramids having equivalent bases are to each other a*

their altitudes.

3d. Pyramids having equal altitudes are to each other as

their bases.

Cor. 2. Since a prism is measured by the product of

its base and altitude, and a pyramid by one third of the

product of its base and altitude, we conclude that any

pyramid is one third of a prism having an equivalent base and

equal altitude

THEOREM XVI.

The volume of the frustum of a pyramid is equivalent to

the sum of the volumes of three pyramids, each of which has

an altitude equal to that of the frustum, and whose bases are,

respectively, the lower base of the, frustum, the upper base of

the frustum, and a mean proportional between these bases.

Let V—ABODE and X—RST be two pyramids, the

one polygonal and the other triangular, having equiva-
lent bases and equal altitudes

;
and let their bases be

placed on the plane MN, their vertices falling on the

parallel plane ran. Pass through the pyramids a plane
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parallel to the common plane of their bases, cutting o .it

the sections abode and rst
; these sections are equivalent,

(Th. 12, Cor. 2), and the pyramids, V—abode and X—rst,
are equivalent, (Th. 13). Now, since the pyramids,
V—ABODE and X—BST, are equivalent, if from the

first we take the pyramid, V—abode, and from the second,
the pyramid, X—rst, the remainders, or the frusta,

ABODE—a and BST—r, will be equivalent.

If, then, we prove the theorem in the case of the frus-

tum of a triangular pyramid, it will be proved for the

frustum of any pyramid whatever.

Let ABO—D be the frustum of a

triangular pyramid. Through the

points D, B, and 0, pass a plane,
and through the points D, O, and

E, pass another, thus dividing the

frustum into three triangular pyra-

mids, viz., D—ABO, O—DEF, and
D—BEO.
Now, the first of these has, for its
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base, the lower base of the frustum, and for its altitude

the altitude of the frustum, since its vertex is in the

upper base
;
the second has, for its base, the upper base

of the frustum, and for its altitude the altitude of the

frustum, since its vertex is in the lower base. Hence,
these are two of the three pyramids required by the

enunciation of the theorem
;
and we have now only to

prove that the third is equivalent to one having, for its

basa, a mean proportional between the bases of the frus-

tum, and an altitude equal to that of the frustum.

In the face ABED, draw HB parallel to BE, and

draw HE and HO. The two pyramids, D—BEO and

H—BEO, are equivalent, since they have a common
base and equal altitudes, their vertices being in the line

BH, which is parallel to the plane of their common

base, (Th. 7, B. VI). "We may, therefore, substitute the

pyramid, H—BEO, for the pyramid, D—BEC. But the

triangle, BOH, may be taken as the base, and E as the

vertex of this new pyramid ; hence, it has the required

altitude, and we must now prove that it has the required

base.

The triangles, ABO and HBO, have a common vertex,

and their bases in the same line
; hence, (Th. 16, B. II),

A ABO : A HBO n AB : HB :: AB : BE. (1)

In the triangles, BEE and HBO, \_E^\_B, and

BE=HB; hence, if BEE be applied to HBO, L E fall-

ing on L B, an(i tne side BE on HB, the point B will

fall on H, and the triangles, in this position, will have a

common vertex, H, and their bases in the same line ;

hence,
A HBO : A BEE : : BO : EF. (2)

But, because the triangles, ABO and BEE, are similar,

we nave
AB . BE ii BO i EF. (3)

From proportions (1), (2), and (3), we have, (Th. 6,

b n),
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A ABO : A HBO : : A HBO : A DEF;
that is, the base, HBO, is a mean proportional between

the lower and upper bases of the frustum.

Hence the theorem
;
the volume of the frustum of a pyra-

mid, etc,

THEOREM XVII.

The convex surface of any right 'pyramid is measured by

the perimeter of its base, multiplied by one half its slant height.

Let S—ABOBEF be a right pyramid, s

of which SH is the slant height ; then will k
its convex surface have, for its measure, /M

±SH(AB + BO+OB + BE+EF+FA). Mm
Since the base is a regular polygon, and /e/LjJa\

the perpendicular, drawn to its plane from
^1/

I \ \\

S, passes through its center, the edges, \ / i /
SA, SB, SO, etc., are equal, (Th. 4, B. YI), ahb
and the triangles SAB, SBC, etc., are equal, and isosceles,

each having an altitude equal to SH.

Now, AB x \SH measures the area of the triangle,

SAB ;
and BO X %SH measures the area of the triangle,

SBO; and so on, for the other triangular faces of the

pyramid. By the addition of these different measures,

we get

%SH(AB + BO + OB + BE + EF+ FA),

as the measure of the total convex surface of the pyramid.
Hence the theorem

; the convex surface of any right

pyramid, etc,

THEOREM XVIII.

The convex surface of the frustum of any right pyramid is

measured by the sum of the perimeters of the two bases, mul-

tiplied by one half the slant height of the frustum.

Let ABOBEF—d be the frustum of a right pyramid;
then will its convex surface be measured by

$Ilh(AB-+ BC4-CD+DE-\ EF+FA+ab+bc+cd+de+ef+fa),
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For, the upper base, abcdef, of the

frustum is a section of a pyramid

by a plane parallel to the lower

base, (Def. 14), and is, therefore,

similar to the lower base, (Th. 12).

But the lower base is a regular

polygon, (Def. 12); hence, the up-

per base is also a regular polygon,
of the same name; and as ab and

AB are intersections of a face of

the pyramid by two parallel planes, A H B

they are parallel. For the same reason, be is parallel to

BO, cd to OB, etc., and the lateral faces of the frustum

are all equal trapezoids, each having an altitude equal

to Hh, the slant height of the frustum.

The trapezoid ABba has, for its measure, \Hh(AB+ab),

(Th. 34, Book I) ;
the trapezoid BOcb has, for its meas-

ure, \Hh{BO + be),
and so on, for the other lateral faces

of the frustum.

Adding all these measures, we find, for their sum,

which is the whole convex surface of the frustum,

IHh {AB+BC+CD+DE+EF+ FA+ab+bc+cd+de+ef+fa).

Hence the theorem
;

the convex surface of the frustum.

THEOREM XIX.

The volumes of similar triangular prisms are to each other

as the cubes constructed on their homologous edges.

LetABO—F ana

abc—/be two similar

triangular prisms ;

then will their vol-

umes be to each

other as the cubes,

whose edges are the

homologous edges
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AB and ab, or as the cubes, whose edges are the homol-

ogous edges BE and be, etc. Since the prisms are similar,

the solid angles, whose vertices are B and b, are equal ;

and the smaller prism, when so applied to the larger that

these solid angles coincide, will take, within the larger,

the position represented by the dotted lines. In this

position of the prisms, draw EH perpendicular to the

plane of the base ABO, and join the foot of the perpen-
dicular to the point B, and in the triangle BEIT draw,

through e, the line eh, parallel to EH', then will EH
represent the altitude of the larger prism, and eh that of

the smaller.

Now, as the bases ABO and aBc, are homologous faces,

they are similar, and we have, (Th. 20, Book II),

A ABO : A aBc : : AB* CoE* (
1

)

But the A's BEH and Beh are equiangular, and there

fore similar, and their homologous sides give the propor-

tion

BE : Be :: EH : eh (2)

and from the homologous sides of the similar faces,

ABED and aBed, we also have

BE : Be :: AB : aB (3)

Proportions (2) and (3 ), having an antecedent and con

sequent the same in both, we have, (Th. 6, B. II),

EH : eh w AB \ aB (4)

By the multiplication of proportions (1) and (•*), term

Dy term, we get

A ABO X EH : A aBc X eu : : AB* : aB*

But A ABO X EH measures the volume of the larger

prism, and A aBc x eh measures the volume of the

smaller.

Hence the theorem; the volumes of similar triangular

prisms^ etc.



BOOK VII. 205

Cor. 1. The volumes of two similar prisms having any

bases whatever, are to each other as the cubes constructed on

their homologous edges.

For, if planes be passed through any one of the late<-al

edges, and the several diagonal edges, of one of these

prisms, this prism will be divided into a number of smaller

triangular prisms. Taking the homologous edge of the

other prism, and passing planes through it and the seve-

ral diagonal edges, this prism will also be divided into

the same number of smaller triangular prisms, similar to

those of the first, each to each, and similarly placed.

]STow, the similar smaller prisms, being triangular, are

to each other as the cubes of their homologous edges ;

and being like parts of the larger prisms, it follows that

the larger prisms are to each other as the cubes of the

homologous edges of any two similar smaller prisms. But

the homologous edges of the similar smaller prisms are

to each other as the homologous edges of the given

prisms ;
hence we conclude that the given prisms are to

each other as the cubes of their homologous edges.

Cor. 2. The volumes of two similar pyramids having any
bases whatever, are to each other as the cubes constructed on

their homologous edges.

For, since the pyramids are similar, their bases are

similar polygons ;
and upon them, as bases, two similar

prisms may be constructed, having for their altitudes, the

altitudes of their respective pyramids, and their lateral

edges parallel to any two homologous lateral edges of the

pyramids.

Now, these similar prisms are to each other as the cubes

of their homologous edges, which may be taken as the

homologous sides of their bases, or as their lateral edges,

which were taken equal and parallel to any two arbitrarily

assumed homologous lateral edges of the two pyramids ;

hence the pyramids which are thirds of their respective

prisms, are to each other as the cubes constructed on any
two homologous edges.

18
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Cor. 3. The volumes of any two similar polyedrons arz U
each other as the cubes constructed on their homologous edges.

"For, by passing planes through, the vertices of the

homologous solid angles of such polyedrons, they may
both be divided into the same number of triangular

pyramids, those of the one similar to those of the other,

each to each, and similarly placed.

Now, any two of these similar triangular pyramids are

to each other as the cubes of their homologous edges ;

and being like parts of their respective polyedrons, it

follows that the polyedrons are to each other as the cubes

of the homologous edges of any two of the similar tri-

angular pyramids into which they may be divided. But

the homologous edges of the similar triangular pyramids
are to each other as the homologous edges of the poly-

edrons
;
hence the polyedrons are to each other as the

cubes of their homologous edges.

THEOREM XX.

The convex surface of the frustum of a cone is measured

by the product of the slant height and one half the sum of

the circumferences of the bases of the frustum.

Let ABCD—abed be the frustum of

a cone ;
then will its convex surface be

, , . (circ. 00 + circ. oc)
measured by Aa x i —

'-,

in which the expression, circ. 00, de-

notes the circumference of the circle

of which 00 is the radius. Inscribe in

the lower base of the frustum, a regu-

lar polygon having any number of

sides, and in the upper base a similar

polygon, having its sides parallel to

those of the polygon in the lower base. These polygons
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may be taken as the bases of the Irustum of a right

pyramid inscribed in the frustum of the cone.

Now, however great the number of sides of the in-

scribed polygons, the convex surface of the frustum of

the pyramid is measured by its slant height multiplied by
one half the sum of the perimeters of its two bases,

(Th. 18) ;
but when we reach the limit, by making the

number of sides of the polygon indefinitely great, the

slant height, perimeters of the bases, and convex surfaco

of the frustum of the pyramid become, severally, the

slant height, circumferences of the bases, and convex sur-

face of the frustum of the cone.

Hence the theorem
; the convex surface of the frustum,

etc.

Cor. 1. If we make oc = OC, and, consequently, circ.

oc = circ. OC, the frustum of the cone becomes, a cylin-

der, and the half sum of the circumferences of the bases

becomes the circumference of either base of the cylinder,

and the slant height of the frustum, the altitude of the

cylinder. Hence, the convex surface of a cylinder is meas-

ured by the circumference of the base multiplied by the alti-

tude of the cylinder.

Cor. 2. If we make oc = 0, the frustum of the cone

becomes a cone. Hence, the convex surface of a cone is

measured by the circumference of the base multiplied by one

half the slant height of the cone.

Cor. 3. If through E, the middle point of Co, the line

Ff be drawn parallel to Oo, and Em perpendicular to

Oo, the line oc being produced, to meet Ff at/, we have,

because the A's EFC and Efc are equal,

Em = O0 + M
.

2S

if we multiply both members of this equation by 2*,

we have



208 GEOMETRY.

that is, circ. Em is equal to one half the sum of the cir

cumferences of the two hases of the frustum. Hence, the

convex surface of the frustum of a cone is measured by the.

circumference of the section made by a plane half way between

the two bases, and parallel to them, multiplied by the slant

height of the frustum.

Cor. 4. If the trapezoid, OCeo, he revolved ahout Oo

as an axis, the inclined side, Cc, will generate the con-

vex surface of the frustum of a cone, of which the slant

height is Cc, and the circumferences of the hases are circ.

OC and circ. oc. Hence, if a trapezoid, one of whose sides

is perpendicular to the two parallel sides, be revolved about

the perpendicular side as an axis, it will generate the frustum

of a cone, the inclined side opposite the axis generating tho

convex surface, and the parallel sides the bases of the frustum.

THEOREM XXI.

The volume of a cone is measured by the area of its base

multiplied by one third of its altitude.

Let V—ABC, etc., he a cone; then

will its volume he measured hy area

ABC, etc., multiplied hy iVO.
Inscribe, in the base of the cone, any

regular polygon, as ABCDEF, which

may he taken as the base of a right pyra-

mid, of which V is the vertex. The
volume of this inscribed pyramid will

have, for its measure, (Th. 15),

polygon ABCDEF x iVO.

Now, however great the number of sides of the pol f-

gon inscribed in the base of the cone, it will still ho d

true that the pyramid of which it is the base, and who-e

vertex is V, will be measured by the area of the poly-

gon, multiplied by one third of VO; but when we

reach the limit, by making the number of sides indefi-
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uitely great, the polygon becomes the ^cle in which it

is inscribed, and the pyramid become +he cone.

Hence the theorem
; the volume of a cone, etc.

Cor. 1. IfR denote the radius of the base of a cone,

and ff its altitude, or axis, its volume will be expressed

by
iff x *i2 2

;

hence, if V and V designate the volume~> of two cones,

of which R and R' are the radii of the bases, and H and

ff' the altitudes, we have

V: V :: J#x *R 2
: \H' x «R' 7

;: Bx«& : ff' X «R'\

From this proportion we conclude,
First. That cones having equal altitudes are to each other

as their bases.

Second. That cones having equal bases are to each other

as their altitudes.

Cor. 2. Retaining the notation above, we have

YL El ^1 m
V

" H x
R*'

l J

and, if the two cones are similar,

ff : ff!
:: R : i2';

ff1 R' , ff" R'*
or

>
~ff

=
R'>

hence
>ir

=
-&'

By substituting for the factors, in the second member
of eq. (

1
), their values successively, and resolving into a

proportion, we get

V : V :: R* : R";
and V : V :: ff3

: H".

Hence, similar cones are to each other as the cubes of the

radii of their bases, and also as the cubes of their altitudes.

Cor. 3. A cone is equivalent to a pyramid having an equiv>
alent base and an equal altitude.

18*
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THEOREM XXII.

'The volume of the frustum of a cone is equivalent to the

sum of the volumes of three cones, having for their common

altitude the altitude of the frustum, and for their several

bases, the bases of the frustum and a mean proportional be-

tween them.

Let ABQD—abed be the frustum of a

cone
;
then will its volume be equiva-

lent to the sum of the volumes, having
Oo for their common altitude, and for

their bases, the circles of which, OO, oc,

and a mean proportional between OO
and oc, are the respective radii.

Inscribe in the lower base of the frus-

tum any regular polygon, and in the

upper base a similar polygon, having
its sides parallel to those of the first. These polygons

may be taken as the bases of the frustum of a right pyra-

mid inscribed in the frustum of the cone.

The volume of the frustum of the pyramid is equiva-

lent to the sum of the volumes of three pyramids, having
for their common altitude the altitude of the frustum,

and for their several bases the bases of the frustum, and

a mean proportional between them, (Th. 16).

Eow, however great the number of sides of the poly-

gons inscribed in the bases of the frustum of the cone,

this measure for the volume of the frustum of the pyr*

mid, of which they are the bases, still holds true
;
biu

when we reach the limit, by making the number of the

sides of the polygon indefinitely great, the polygons be-

come the circles, the frustum of the pyramid becomes

the frustum of the cone, and the three partial pyramids,
whose sum is equivalent to the frustum of the pyramid,
become three partial cones, whose sum is equivalent to

the frustum of the cone.
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Hence the theorem
;
the volume ofthefrustum ofa cone, etc.

Cor. 1. Let R denote the radius of the lower base, R f

that of the upper base, and IT the altitude of the frustum

of a cone; then will its volume be measured, (Th. 21), by

IE x *i22 + iH x «R n + iffx *R x R',
since *R x R' expresses the area of a circle which is a

mean proportional between the two circles, whose radii

arc R andi2'.

Now, if the bases of the frustum become equal, or

7? — R
',

the frustum becomes a cylinder, and each of the

last two terms in the above expression for the volume of

the frustum of a cone will be equal to the first
; hence,

the volume of a cylinder, of which iZ"is the altitude, and

It the radius of the base, is measured by H X *R 2
.

Therefore, the volume of a cylinder is measured by the

area of its base multiplied by its altitude.

Cor. 2. By a process in all respects similar to that pur-
sued in the case of cones, it may be shown that similar

cylinders are to each other as the cubes of the radii of their

bases, and also as the cubes of their altitudes.

Cor. 3. A cylinder is equivalent to a prism having an

equivalent base and an equal altitude.

THEOREM XXIII.

If a plane be passed through a sphere, the section will be a

circle.

Let be the center of a sphere

through which a plane is passed,

making the section AmBn
;
then

will this section be a circle.

From let fall the perpendic-
ular Oo upon the secant plane,

and draw the radii OA, OB, and

Om, to different points in the

intersection of the plane with

the surface of the sphere. Now,
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the oblique lines OA, OB, Om, are all equal, being ladii

of the sphere; they therefore meet the plane at equal dis

tances from the foot of the perpendicular Oo, (Cor., Th. 4,

B.VI); hence oA, oB, om, etc., are equal: that is, all the

points in the intersection of the plane with the surface of

the sphere are equally distant from the point 0. This

intersection is therefore the circumference of a circle of

which o is the center.

Hence the theorem; if a plane be passed thrcugh a

sphere, etc.

Cor. 1. Since AB, the diameter of the section, is a chord

of the sphere, it is less than the diameter of the sphere ;

except when the plane of the section passes through the

center of the sphere, and then its diameter becomes the

diameter of the sphere. Hence,

1. All great circles of a sphere are equal.

2. Of two small circles of a sphere, that is the greater

whose plane is the less distantfrom the center of the sphere.

3. All the small circles of a sphere whose planes are at the

same distance from the center, are equal.

Cor. 2. Since the planes of all great circles of a sphere

pass through its center, the intersection of two great
circles will be both a diameter of the sphere and a com-

mon diameter of the two circles. Hence, two great circles

of a sphere bisect each other.

Cor. 3. A great circle divides the volume of a sphere, and

also its surface, equally.

For, the two parts into which a sphere is divided by

any of its great circles, on being applied the one to the

other, will exactly coincide, otherwise all the points in

their convex surfaces would not be equally distant from

the center.

Cor. 4. The radius of the sphere which is perpendicular

to the plane of a small circle, passes through the center of th*

circ le.
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Cor. 5. A plane passing through the extremity of a radius

of a sphere, and perpendicular to it, is tangent to the sphere.

For, if the plane intersect the sphere, the section is a

circle, and all the lines drawn from the center of the

sphere to points in the circumference are radii of the

sphere, and are therefore equal to the radius which is per-

pendicular to the plane, which is impossible, (Cor. 1, Th.

3, B. VI). Hence the plane does not intersect the sphere,

and has no point in its surface except the extremity of

the perpendicular radius. The plane is therefore tangent
to the sphere by Def 22.

THEOREM XXIV.

If the line drawn through the center and vertices of two

opposite angles of a regular polygon of an even number of

sides, be taken as an axis of revolution, the perimeter of either

semi-polygon thusformed will generate a surface whose measure

is the axis multiplied by the circumference of the inscribed circle.

Let ABODEF be a semi-polygon cut

off from a regular polygon of an even

number of sides by drawing the line AF
through the center 0, and the vertices A
and F, of two opposite angles of the poly-

gon ;
then will the surface generated by

the perimeter of this semi-polygon re-

volving about AF as an axis, be meas-

ured by AF X circumference of the in-

scribed circle.

From m, the middle point, and the extremities B and

C of the side B 0,draw mn, BK, and OL, perpendicular to

AF; join also m and 0, and draw BIT perpendicular to

QL. The surface of the frustum of the cone generated

by the trapezoid BKLO, has for its measure circ. mn X

BO, (Cor. 3, Th. 20). Since mO is perpendicular to BO,
and mn to BIT, the two A's, BOH and mnO, are similar,

and their homologous sides give the proportion
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mn : mO :: BE (= KL) : BO
and as circumferences are to each other as their radii, we
have

circ. mn : circ. mO :: KL : BO
Hence, circ. mn x BQ = circ. mO X KL.

But mO is the radius of the circle inscribed in tne

polygon. Hence, the surface generated by BQ during the

revolution of the semi-polygon, is measured by the cir-

cumference of the inscribed circle multiplied by KL, the

part of the axis included between the two perpendicu-
lars let fall upon it from the extremities B and 0. The
surface generated by any other side of the semi-polygon
will be measured, in like manner, by the circumference of

the inscribed circle multiplied by the corresponding part

of the axis.

By adding the measures of the surfaces generated by
the several sides of the semi-polygon, we get

Circ. mO x (AK + KL + LN+ JSTM+ MF)
for the measure of the whole surface.

Hence the theorem ; if the line drawn through the cm

Mr, etc.

Cor. It is evident that the surface generated by any

portion, as CD and DK, of the perimeter, is measured by
circ. mO x LM.

THEOREM XXV.

The surface of a sphere is measured by the circumference

of one of its great circles multiplied by its diameter.

Let a sphere be generated by the revolution of the

Bemi-circle, AKF, about its diameter, AF; then will the

surface of the sphere be measured by

Circ. AOxAF.
Inscribe in the semi-circle any regular semi-polygon,

and let it be revolved, with the semi-circle, about the axii
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AF; the surface generated by its perim-
eter will be measured by

Circ. mO x AF, (Th. 24),

and this measure will hold true, how-

ever great the number of sides of the in-
Hj

scribed semi-polygon. But as the num-

ber of these sides is increased, the

radius mO, of the inscribed semi-circle,

increases and approaches equality with

the radius, AO; and when we reach the limit, by

making the number of sides indefinitely great, the radii

and semi-circles become equal, and the surface generated

by the perimeter of the inscribed semi-polygon becomes

the surface of the sphere. Therefore, the surface of the

sphere has, for its measure,

Circ. A x AF.

Hence the theorem
;

the surface of a sphere is meas-

ured, etc.

Cor. 1. A zone of a sphere is measured by the circumfer-

ence of a great circle of the sphere multiplied by the altitude

of the zone.

For, the surface generated by any portion, as CD and

DE, of the perimeter of the inscribed semi-polygon has,

for its measure, circ. mO X LM, (Cor. Th. 24) ;
and as

the number of the sides of the semi-polygon increases,

LM remains the same, the radius mO alone changing,
and becoming, when we reach the limit, equal to AO:
hence, the surface of the zone is expressed by

Circ. Ad X LM,
whether the zone have two bases, or but one.

Cor. 2. Let H and Hr denote the altitudes of two

zones of spheres, whose radii are R and R '

;
then these

zones will be expressed by 2<>rR x H and 2*R ' x Rr

;

and if tht surfaces of the zones be denoted by Z and Z'
f

we have
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Z : Z 1
: 2«RxH : 2«R' x Hf

i: Rx E : R' x H'>

•Hence, 1. Zones in different spheres are to each other at

their altitudes multiplied by the radii of the spheres.

2. Zones of equal altitudes are to each other as the radii

of the spheres,

3. Zones in the same, or equal spheres, are to each other as

their altitudes.

Cor. 3. Let R denote the radius of a sphere; then will

its diameter be expressed by 222, and the circumference

of a great circle by 2irR; hence its surface will be ex

pressed by
2«R x 2R = 4iri2 2

.

That is, the surface of a sphere is equivalent to the area of

four of its great circles.

Cor. 4. The surfaces of spheres are to each other as the

squares of their radii.

THEOREM XXVI.

Tf a triangle be revolved about either of its sides as an axis,

the volume generated will be measured by one third of the prod-

uct of the axis and the area of a circle, having for its radius

the perpendicular let fall from the vertex of the opposite

angle on the axis, or on the axis produced.

First. Let the triangle ABC,
in which the perpendicular from

C falls on the opposite side, AB,
be revolved about AB as an axis

;

then will *Vol. A ABChuve, for

its measure, \AB x *CD .

The two A's into which A ABC is divided by the

perpendicular DC, are right-angled, and during the rev-

olution they will generate two cones, having for their

* Vol. A ABC, cone A ADC, are abbreviations for volume gener-

ated by A ABC, cone generated by A ADC; and surfaces of revolu-

sien generated by lines will hereafter be denoted by like abbreviations.
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common base the circle, of which D is the radius, and

for their axes the parts DA and DB, into which AB is

divided.

Now, *Cone a ADO is measured by \AD x *DO\

(Th. 21), and cone A BDO, by %BD x «DO
%

\
but these

two cones compose Yol. A ABO; and by adding their

measures, we have, for that of Yol. A ABO,

IAD x *D0
2

+ iBD x *~D(7
2 = JAB x <^DO\

Second. Let the trian- 9

gle FFGr, in which the

perpendicular from G-

falls on the opposite side

FFproduced, be revolved

about FF as an axis ;

then will Yol. A FFG E F_ "h

have, for its measure, %EF x *GfH\ CrH being the per-

pendicular on FF produced. For, in this case it is appa-

rent, that Yol. A FFGr is the difference between the

cone A FHCr and the cone a FHCr. The first cone has,

for its measure, \FH x *GH\ and the second, for its

measure, %FH x wGrJI
2

; hence, by subtraction, we have

Vol. A FFG = IEH X hGH2 — iFH X 7t~GH
2 = IEF X 7t~GH

2
.

Hence the theorem
; if a triangle be revolved about either

of its sides, etc.

Scholium.—If we take either of the above expressions for the meas-

ure of the volume generated by the revolution of a triangle about one

of its sides, for example the last, and factor it otherwise, we have

\EF X *GH* = EFX $GHxU*2GH= FFx $GHX —3

Now, EF X %GH expresses the area of the triangle EFG; and

2x X GH
, one third of the circumference described by the point Q

o

during the revolution.

The expression, \AB X rtDC
2

, maybe factored and interpreted in the

* See note on the preceding page.

19
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same manner. Hence, we conclude that the volume generated by th*

revolution of a triangle about either of its sides, is measured by the area

of the triangle multiplied by one third of the circumference described in

the revolution by the vertex of the angle opposite the axis.

THEOREM XXVII.

The volume generated by the revolution of a triangle about

any line lying in its plane, and passing through the vertex of

one of its angles, is measured by the area of the triangle mul-

tiplied by two thirds of the circumference described, in the

revolution, by the middle 'point of the side opposite the vertex

through which the axis passes.

Let the triangle ABCbe
revolved about the line

AG, drawn through the

vertex A, and lying in the

plane of the triangle, and

let HE be the perpendicu-
lar let fall from H, the

middle point of BO, upon
the axis AG- ;

then will Vol. a ABO have, for its meas

ure, A ABO x § circ. HE.
From the extremities of BO, let fall the perpendicu-

lars BE and OB, on the axis; and from A draw AST per

pendicular to BO, or BO produced, and produce OB,
until it meets the axis in G-.

Now, it is evident that Yol. A ABO is the difference

between Yol. A AGO and Yol. A AGB. But Yol.

A AGO is expressed by a AGO x J circ. (7i>;and Yol.

A AGB, by A AGB x J circ. BE, (Scholium, Th. 26).

Hence,

Vol. A ABC= ^ AGO X I circ. CD— A AGB X i circ. BF.

Substituting for areas of A's, and for circumferences,

their measures, we have
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Vol. A A£C= GO X IAK X ?^2— GB x UK X ^^o o

= GCx \AKx
2
J^R—{GC—BC) X UKX ^^o •

~GCXIAKX^^— GCXIARX^^+BCXUK*^1^o 8 8

= GO X \AK X ^(CD — BF) + BC X $AR X —„—.

o o

But i?iV being drawn parallel to J.#, we have

GN = CD — BF;
hence, substituting this value for CD — BF, in the first

term of the second member of the last equation, we have

o o

= GCx CNx ±AK x
2
^ + BC x %AK x ?^^,

by changing the order of factors in the first term of the

second member. The homologous sides of the similar

triangles, GOD and BCN, give the proportion

GO : CD : : BO : ON

whence, GO x ON = CD x BO

Substituting this value for GO X CJSF, in the last equa-
tion above, and arranging the factors as before, it becomes

Vol. A ABC= BO x lAKx^^ + BC x \AK x^F
- BO x UK x g^V BF

>.

a

But CD + BF= 2HF; hence

Vol, A ABC=--BCx \AKx —~=BCx ±AKx f.2*.J7#j
o

and since

BO x \AK= A ABC, and § x 2«.HE - § circ. ##,
this measure conforms to the enunciation.

It only remains for us to consider the case in which

the axis is parallel to the base BC of the triangle The
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precedi :g demonstration will not now apply, because it

supposes BO, or B produced, to intersect the axis.

Let the axis AE, be parallel to the

base BO, of the A ABO. From B
and let fall on the axis the perpen-
diculars BE and OB.

Now it is plain that

Vol. A ABO= cylinder rectangle BODE -f

cone a ADO— cone A AEB.

Substituting in second member, for cylinder and cones,

their measures, we have

Vol. AABO=BE x *£Z)
2 + IAD x ^OD 2—\AE x «BE*

=$DEx *7JD
2

+iDEx «OD
2

+§ADx*OD*—iAEx *BE\

ButBE= OD, and ^DE + %AD = \AE. Reducing by
these relations, we have

Vol. A ABO= %DE x «OD 3= %DE x \OD x 4*.OD
= DEx lODx %.<L«.0D = B0x \QD x \Z«.OD.

And, since BO x \OD expresses the area of the tri-

angle ABO, and §.2^.(77), two thirds of the circumfer-

ence described by any point of the base, this expression

also conforms to the enunciation.

Hence the theorem ;
the volume generated by the revela-

tion, etc.

Oor. If the generating

triangle becomes isosceles,

the perpendicular from A
meets the base at its middle

point. In this case, if we
resume the expression

BOx \AK x
4

-^.
it becomes

BO x \AK x KE x i*.
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But, since AKis perpendicular to BC, andKE to BN,
the a's AKE and CBN are similar, and their honiolo*

gous sides give the proportion

BO : BJST :: AK : KE
whence, BCx KE = BJSTx AK
Changing the order of factors in the last expression on

the preceding page, and replacing BOxKE by its value,

it becomes

lAKx AKxBNx ±* = AK2 xMxf*
Hence,

Vol. A ABO= |* x AK7

x BN.= $« x AK2

x DF

That is, the volume generated by the revolution of an isos -

celes triangle about any line drawn through its vertex and lying

in the plane of the triangle, is measured by \n times the square

of the perpendicular of the triangle multiplied by the part of the

axis included between the two perpendiculars let fall upon it

from the extremities of the base of the triangle.

Scholium.— If we resume the equation

Vol. A ABC = BC X \AK X ^ô

and change the order of the factors in the second member, it may be

put under the form

Vol. A ^BC = BC X 2*.HE X \AK.

But during the revolution of the triangle, the side BC generates the

surface of the frustum of a cone, which surface has for its measure

BC X 2*.HE (Th. 20, Cor. 3).

Hence, the above equation may be thus interpreted: The volumt

generated by the revolution of a triangle about any line lying in its plans

and passing through the vertex of one of its angles, is measured by the

surface generated, during the revolution, by the side opposite the vertex

through which the axis passes multiplied by one third of the perpen-

dicular drawn from the vertex to that side.

19*
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THEOREM XXVIII.

If the line drawn through the center and vertices of two op*

posite angles of a regular polygon, of an even number of

sides, be taken as an axis of revolution, either semi-polygon

thus formed will, during this revolution, generate a volume

which has, for its measure, the surface generated by the

perimeter of the semi-polygon multiplied by one third of its

apothem.

Let ABODE be a regular semi-poly-

gon, cut off from a regular polygon
of an even number of sides, by draw-

ing a line through the center, 0, and
the vertices, A and E, of two opposite

angles of the polygon ;
then will the

volume generated by the revolution

of this semi-polygon about AE, as an

axis, be measured by (Sur. AB -f sur.

BO + sur. CD -f sur. DE) x }Om, Om
being the apothem of the polygon.

For, if from the center of 0, the lines OB, 00, OD, be

drawn to the vertices of the several angles of the semi-

polygon, it will be divided into equal isosceles triangles,

the perpendicular of each being the apothem of the

polygon.

Now, the volume generated by A AOB has, for its

measure,
Sur. AB x iOm,
Sur. BO X iOm,
Sur. OD x \Om,

that by A BOO,
" A OOD,
" A DOE, Sur. DE x iOm, (Scholium, Th. 27).

By the addition of the measures of these partial vob

nines, we find, for that of the whole volume,

Vol. semi-polygon ABODE = sur. perimeter ABODE X iOm,

and were the number of the sides of the semi-polygon
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increased or diminished, the reasoning would be in no

wise changed.
Hence the theorem ; if the line drawn through the cen-

ter, etc.

Scholium.—The volume generated by any portion of the semi-poly-

gon, as that composed of the two isosceles /±'a BOC, COD, is meas

ured by
Sur. perimeter BCD X 10m.

THEOREM XXIX.

The volume of a sphere is measured by its surface multi-

flied by one third of its radius.

Let a sphere be generated by the

revolution of the semicircle AOE,
about its diameter, AE, as an axis;

then will the volume of the sphere be

measured by

sur. semi-circ. OA x \OA.

For, inscribe in the semi-circle any

regular semi - polygon, as ABODE,
and let it, together with the semi-cir-

cle, revolve about the axis AE. The

semi-polygon will generate a volume which has, for i ts

measure,

Sur. perimeter ABODE x JOw, (Th. 28),

in which Om is the apothem of the polygon.

Now, however great the number of sides of the in-

scribed regular semi-polygon, this measure for the volume

generated by it, will hold true
; but when we reach the

limit, by making the number of sides indefinitely great,
the perimeter and apothem become, respectively, the

semi-circumference and its radius, and the volume gen
erated by the semi-polygon becomes that generated by
the semi-circle, that is, the sphere. Therefore,

Vol. sphere = sur. semi-circ. OA x %OA.
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Scholium 1.—If we take any portion of the inscribed senii-pulygon,

as BO C, the volume generated by it is measured by sur. BC X %Omy

(Scholium, Th. 27) ; and when we pass to the limit, this volume be-

comes a sector, and sur. BC a zone of the sphere, which zone is the

base of the sector. Hence, the volume of a spherical sector is measured

by the zone which forms its base multiplied by one third of the radiux

of the sphere.

Scholium 2.— Let R denote the radius of a sphere ;
then will its

diameter be represented by 2R. Now, since the surface of a sphere is

equivalent to the area of four of its great circles, and the area of a

great circle is expressed by 7tR 2
,
we have

Vol. sphere = 4*R* X IR = \rtRK

And since R3 = l(2R )
3
, we also have

Vol. sphere = £*i2
3 = i*(2i?)».

Hence, the volume of a sphere is measured by four thirds of it times the

cube of the radius, or by one sixth of tt times the cube of the diameter.

THEOREM XXX.

The surface of a sphere is equivalent to two thirds of the

surface, bases included, and the volume of a sphere to two

thirds of the volume, of the circumscribing cylinder.

Let AMD be a semi-circle, and
ABQD a rectangle formed by

B:

drawing tangents through the

middle point and extremities of

the semi-circumference, and let Mr-
the semi-circle and rectangle be
revolved together about AD as

an axis. The rectangle will thus c

generate a cylinder circumscribed

about the sphere generated by the semi-circle.

First. The diameter of the base, and the altitude of
the cylinder, are each equal to the diameter of the

sphere ; hence the convex surface of the cylinder, being
measured by the circumference of its base multiplied by
its altitude, (Cor. 1, Th. 20), has the same measure aa
the surface of the sphere, (Th. 25). But the surface of
the sphere is equivalent to four great circles, (Cor. 3j

/^^ A "^\



BOOR VII. 225

Th. 25). Hence, the convex surface of the cylinder is

equivalent to four great circles
;
and adding to these the

bases of the cylinder, also great circles, we have the

whole surface of the cylinder equivalent to six great
circles. Therefore, the surface of the sphere is four

sixths = two thirds of the surface of the cylinder, in-

cluding its bases.

Second. The volume of the cylinder, being measured

by the area of the base multiplied by the altitude, (Cor.

1, Th. 22), is, in this case, measured by the area of a

great circle multiplied by its diameter = four great cir-

eles multiplied by one half the radius of the sphere.
But the volume of the sphere is measured by four

great circles multiplied by one third of the radius, (Scho-
lium 2, Th. 29). Therefore,

Vol. sphere : Vol. cylinder : : J : J : : 2 : 3
;

whence, Vol. sphere = § Vol. cylinder.

Hence the theorem
; the surface of a sphere is equiva-

lent, etc.

Cor. The volume of a sphere is to the volume of the cir~

cumscribed cylinder, as the surface of the sphere is to the sur-

face of the cylinder.

Scholium.—Any polyedron circumscribing a sphere, may be regarded
as composed of as many pyramids as the polyedron has faces, the cen-

ter of the sphere being the common vertex of these pyramids, and the

several faces of the polyedron their bases. The altitude of each pyra-
mid will be a radius of the sphere ;

hence the volume of any one pyra-
mid will be measured by the area of the face of the polyedron which

forms its base, multiplied by one third of the radius of the sphere.

Therefore, the aggregate of these pyramids, or the whole polyedron,
will be measured by the surface of the polyedron multiplied by one

third of the radius of the sphere.

But the volume of the sphere is also measured by the surface of the

sphere multiplied by one third of its radius. Hence,

Sur. polyedron : Sur. sphere : : Vol. polyedron : Yol. sphere.

That is, the surface of any circumscribed yolycdron is to the surface

of the sphere^ as the volume of the polyedrori is to the volume of ihs

sphere.
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THEOREM XXXI.

The volume generated by the revolution of the segment of a

circle about a diameter of the circle exterior to the segment, is

measured by one sixth of «r times the square of the chord of

the segment, multiplied by the part of the axis included be-

tween the perpendiculars let fall upon it from the extremities

of the chord, .

Let BOB be a segment of the circle,

whose center is 0, and AH a part of a

diameter exterior to the segment. Draw
the chord BB, and from its extremities

let fall the perpendiculars, BF, BE on

AH; also draw Om perpendicular to

BB. The spherical sector generated

by the revolution of the circular sector

BCBO about AH, is measured by zone BB x \B0,

(Scholium 1, Th. 29),
= 2«.BO x EF X %BO - §*W x

EF; and the volume generated by the isosceles triangle

BOB is measured by

\^Om" x EF, (Cor. 1, Th. 27).

The difference between these two volumes is that gen-

erated by the circular segment BOB, which has, there-

fore, for its measure,

l«EF(BO* —~Om) - %«EF x Bm^, (Th. 39, B. I).

But since Bm = \BB, Bm = \BB* \ hence, by sub-

Btituting, we have

Vol. segment BOB - \«EF x \BB* - \*~BB* x EF.

Hence the theorem.

THEOREM XXXII.

The volume of a segment of a sphere has, for its measure,

the half sum of the bases of the segment multiplied by its alti-

tude, plus the volume of a sphere which has this altitude for

its diameter.
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Let BOB be the arc of a circle, and
BF and BE perpendiculars let fall

from its extremities upon a diameter, cA
of which AH is a part; then, if the

area BCBEF be revolved about AH I

as an axis, a spherical segment will

be generated, for the volume of which

it is proposed to find a measure.

The circular segment will generate a volume meas-

ured by \«BB
2

x EF, (Th. 31) ;
and the frustum of the

cone generated by the trapezoid BBEF will have, for

its measure,

i<r"5P
2

x EF+ i«BE* xEF+ i«BFxBEx EF, (Th. 22),

= §«EF(BF
2

+~BE
2

+ BF x BE).
But the sum of these two volumes is the volume of

the spherical segment, which has, therefore, for its

measure,

i*EF {BB
2

+ 2BF 2

+ 2BE 2

+ 2BF x BE)
From B let fall the perpendicular Bn on BE; then will

Bn = BE—nE=BE— BF;

hence, Bn = BE 2— 2BE x BF + BF 2

2 "^—2and since BB - Bn + Bn = EF + Bn %

we have BB 2 = EF 2 + BE 2

+ BF
2— 2BE x BF.

By substituting this value for BB 2

,
in the above meas-

ure for the volume of the segment, we find

UEF(EF
2+DE 2

+RF
2

^2DExBF^2BF
2

-j-2DE
2

+ 2BFxDE]

r- I «EF {EF
2

+WE 2

+ ZBF2

) =faEF* + EF (^
DE

~
—̂--

).

Which last expression conforms to the enunciation.

Hence the theorem
;
the volume of a segment of a sphere,

etc.

Cor. When the segment has but one base, BF becomes

eero, and EF becomes EA\ and the final expression
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which we found for the volume of the segment reduces

to

$«£A> + EA x
'

2

Hence, A spherical segment having but one base, is equiva-

lent to a sphere whose diameter is the altitude of the segment,

plus one half of a cylinder having for base and altitude the

base and altitude of the segment.

Scholium.—"When the spherical segment has a single base, we may

put the expression, \hEA + EA X —— , under a form to indicate a

convenient practical rule for computing the volume of the segment.

Thus, since the triangle DEO is right-angled, and 0j£= OA— EA,
we have

DE2 =TDO a—~OE
2 = O?— Ol2

+ 20A X EA—~EA2

= 20Ax EA—~EA\

By substituting this value for DE 2
in the expression for the volume

of the segment, we find

UEA? + EAX?X(20AXEA— ~EA*)
2

Bsi*1Z
f
-f EA

2
X % [20A— EA)

2

= }rtEA
9

+U.ZEA
i

{20A— EA)
= \hEA\EA + Q.OA— 3EA)
= lrtEA\6.0A— 2EA)
= l7tEA\%OA— EA)

Hence, the volume of a spherical segment, having a single base, is

measured by one third of n times the square of the altitude of the seg-

ment, multiplied by the difference between three times the radius of lfa&

sphere and this altitude.

RECAPITULATION

Of some of the principles demonstrated in this and the pre-

ceding Boohs.

Let R denote the radius, and D the diameter of any
circle or sphere, and H the altitude of a cone, or of a

segment of a sphere ; then,



-i*r + *&*" + **"•>

BOOK VII. 229

Circuinforence of a circle == 2*JK.

Surface of a sphere = 4*J22

,
or nD\

Zone forming the base of a 1 _ ~ ^ „.

segment of a sphere, /

Volume or solidity of a sphere = {*B*, or £*!)•.

Volume of a spherical sector = %nR
2 x JZ".

Volume of a cone, of which
^

Jit is the radius of the V = \*IP x H.

base )

Volume of a spherical seg-'

ment, of which R' is the

radius of one base, and

R" the radius of the

other, and whose altitude

is#,
If the so irment has but one^ . „, , ^hR'*

;,„ -, ,!
= \*H* + H.—^ ; or,

base, R" = zero, and the > 2

volume of the segment, J = J*JP(3i2
— H).

PRACTICAL PROBLEMS.

1. The diameter of a sphere is 12 inches
;
how many

cubic inches does it contain? Arts. 904.78 cu. in.

2. What is the solidity of the segment of a single base

that is cut from a sphere 12 inches in diameter, the altitude

of the segment being 3 inches? Arts. 141.372 cu. in.

3. The surface of a sphere is 68 square feet
;
what is

its diameter ? Ans. D = 4.652 feet.

4. If from a sphere, whose surface is 68 square feet, a

segment be cut, having a depth of two feet and a single

base, what is the convex surface of the segment ?

Ans. 29.229+ sq. ft.

5. What is the solidity of the sphere mentioned in the

two {receding examples, and what is the solidity of the

segment, having a depth of two feet, and but one base ?

A ( Solidity of sphere, 52.71 cu. ft.

t " "
segment, 20.85 "

20
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6. In a sphere whose diameter is 20 feet, what is the

solidity of a segment, the bases of which are on the same

side of the center, the first at the distance of 3 feet from

it, and the second of 5 feet; and what is the solidity of

a second segment of the same sphere, whose bases are

also on the same side of the center, and at distances

from it, the first of 5 and the second of 7 feet ?

a ( Solidity of first segment, 525.7 cu. ft
US

I
" " second " 400.03 "

7. If the diameter of the single base of a spherical

segment be 16 inches, and the altitude of the segment 4

inches, what is its solidity ? *

Arts. 435.6352 cubic inches.

8. The diameter of one base of a spherical segment is

18 inches, and that of the other base 14 inches, these

bases being on opposite sides of the center of the sphere,

and the distance between them 9 inches
;
what is the

volume of the segment, and the radius of the sphere ?

a ( Vol. seg., 2219.5 cubic inches.

\ Bad. of sphere, 9.4027 inches.

9. The radius of a sphere is 20, the distance from the

center to the greater base of a segment is 10, and the

distance from the same point to the lesser base is 16
;

what is the volume of the segment, the bases being on

the same side of the center? Ans. 4297.7088.

10. If the diameter of one base of a spherical segment
be 20 miles, and the diameter of the other base 12 miles*

and the altitude of the segment 2 miles, what is its

solidity, and what is the diameter of the sphere ?

* First find the radius of the sphere.

Note.—The Key to this work contains full solutions to all the problems in

the Geometry and Trigonometry, and the necessary diagrams for illustration.
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BOOK VIII.

PRACTICAL GEOMETRY.

APPLICATION OF ALGEBRA TO GEOMETRY, AND ALSO
PROPOSITIONS FOR ORIGINAL INVESTIGATION.

No definite rules can be given for the algebraic solu-

tion of geometrical problems. The student must, in a

a great measure, depend on his own natural tact, and

Lis power of making a skillful application of the geomet-
rical and analytical knowledge he has thus far obtained.

The known quantities of the problem should be repre-

sented by the first letters of the alphabet, and the un-

known by the final letters
;
and the relations between

these quantities must be expressed by as many inde-

pendent equations as there are unknown quantities. To
obtain the equations of the problem, we draw a figure,

the parts of which represent the known and unknown

magnitudes, and very frequently it will be found neces-

sary to draw auxiliary lines, by means of which we can

deduce, from the conditions enunciated, others that can

be more conveniently expressed by equations. In many
cases the principal difficulty consists in finding, from the

relations directly given in the statement, those which

are ultimately expressed by the equations of the problem.

Having found these equations, they are treated by the

known rules of algebra, and the values of the required

magnitudes determined in terms of those given.
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PROBLEM I.

Given, the hypotenuse, and the sum of the other two sides

of a right-angled triangle, to determine the triangle.

Let ABO be the A. Put OB = y, AB
= x, AO= h, and OB + AB = s. Then,

by a given condition, we have

x + y = s;

and, x*+ y*= h\ (Th. 39, B. I).

lleducing these two equations, and we have

x = \s =b i^W^7; y mm \s =fc Jv^tf— *
2
.

If A = 5 and * = 7, a; = 4 or 3, and y = 3 or 4.

Remark.— In place of putting x to represent one side, and y the

other, we might put [x -f- y) to represent the greater side, and (x
—

y)

the less side
; then,

h2

x* + y*
= -, and 2x = s, etc.

PROBLEM II.

(riven, the base and perpendicular of a triangle, to find the

side of its inscribed square.

Let ABO be the A. Put
AB mm

b, the base, OB — p,

the perpendicular.

Draw EF parallel to AB,
and suppose it equal to EG,
a side of the required square ; and put EF= x.

Then, by similar A's, we have

01 : EF : : OB : AB.

That is,

Hence,

p— x P b.

bp— bx = px ; or, x m t f .r
- b + p

That is, the side of the inscribed square is equal to the

product of the base and altitude, divided by their sum.
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PROBLEM III.

In a triangle, having given the sides about the vertical

angle, and the line hisecting that angle and terminating in

the base, to find the base.

Let ABO be the a, and let a cir-

cle be circumscribed about it. Di-

vide the arc AEB into two equal

partu at the point E, and draw EO.
This line bisects the vertical angle,

(Cor., Th. 9, B. HI). Draw BE.
Put AD = x, DB =

y, AQ= a,

OB = b, OD = c, and BE = w. The two A's, ADO and

EBO, are equiangular; from which we have

w + o : b : : a : c ; or, cw + <?
2 = ab

; (
1

)

But, as EO and J.1? are two chords that intersect each

other in a circle, we have

cw = xy, (Th. IT, B. III).

Therefore, xy + c* = ab. (
2

)

But, as (7D bisects the vertical augle, v; e have

a : b :: x : y, (Th. 24, B. II).

Or,

Hence,

And,

Now, as x and # are determined, the base is deter-

mined.

Remark.— Ot serve that equation (2) is Theorem 20, Book III

20*
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PROBLEM IV.

To determine a triangle, from the base, the line bisecting

the vertical angle, and the diameter of the circumscribing circle.

Describe the circle on the given

diameter, AB, and divide it into two

parts, in the point D, so that AD x
DB shall be equal to the square of

one halfthe given base, (Th. 17, B. III).

Through D draw EDG, at right

angles to AB, and EG will be the given base of the

triangle.

Put AB — n, DB = m, AB = d, DG = b.

Then, n -f m = d, and nm

and these two equations will determine n and m ; there-

fore, we shall consider n and m as known.

Now, suppose EEG to be the required A; and draw

RIB and HA. The two A's, ABE, DBI, are equian-

gular ; and, therefore, we have

AB : EB : : IB : DB.

But EI is a given line, that we will represent by c
;

and if we put IB — w, we shall have EB = c + w; then

the above proportion becomes,

d : c + w : : w : m.

Now, w can be determined by a quadratic equation ;

and, therefore, IB is a known line.

In the right-angled A DBI, the hypotenuse IB, and

the base DB, are known ; therefore, DI is known, (Th.

39, B. I) ;
and if DI is known, EI and IG are known.

Lastly, let EH= x, EG = y, and put EI= p, and IG

-?•
Then, by Theorem 20, Book III, pq + <?' = org (

1
)

But, x : g :: p : q (Th. 24, B. II)
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Or, x=*l (2)

Now, from equations (
1

) and (
2

) we can determine x

andy, the sides of the A ;
and thus the determination has

been attained, carefully and easily, step by step.

PROBLEM V.

Three equal circles touch each other externally, and thus

inclose one acre of ground; what is the diameter in rods of

each of these circles f

Draw three equal circles to touch each other exter-

nally, and join the three centers, thus forming a triangle.

The lines joining the centers will pass

through the points of contact, (Th. 7,

B.IH).
Let R represent the radius of these

equal circles; then it is obvious that

each side of this A is equal to 2R.

The triangle is therefore equilateral,

and it incloses the given area, and three equal sectors.

As the angle of each sector is one third of two right

angles, the three sectors are, together, equal to a semi-

circle ; but the area of a semi-circle, whose radius is R, is

ATJ?
2

expressed by — ;
and the area of the whole triangle

irR2

must be —- -f 160 ;
but the area of the A is also equal to

R multiplied by the perpendicular altitude, which is

fiv/3.

Therefore,

Or,

jRV3 =^ + 160.

22»(2%/3
—

*)
= 320.

320 320 - 992.248.
2 v/3— 3.1415926 0.3225

Hence, R = 31.48 + rods, for the required result
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Problem VI.— In a right-angled triangle, having given
the base and the sum of the perpendicular and hypotennse,
to find these two sides,

Prob. VII.— Given, the base and altitude of a triangle, to

divide it into three equal parts, by lines parallel to the base.

Prob. VIII.—In any equilateral A, given the length of
the three perpendiculars drawn from any point within, to the

three sides, to determine the sides*

Prob. IX.—In a right-angled triangle, having given the

base, (
3

),
and the difference between the hypotenuse and per-

pendicular, (
1

),
to find both these two sides.

Prob. X.— In a right-angled triangle, having given the

hypotenuse, (5), and the difference between the base and

perpendicular, (
1

),
to determine both these two sides.

Prob. XI.—Having given the area of a rectangle inscribed

in a given triangle, to determine, the sides of the rectangle.

Prob. XII.—In a triangle, having given the ratio of the

two sides, together with both the segments of the base, made

by a perpendicular from the vertical angle, to determine the

sides of the triangle.

Prob. XIH.—In a triangle, having given the base, the

sum of the other two sides, and the length of a line drawn

from the vertical angle to the middle of the base, to find the

sides of the triangle.

Prob. XTV.—To determine a right-angled triangle, having

given the lengths of two lines drawn from the acute angles to

*he middle of the opposite sides.

Prob. XV.—To determine a right-angled triangle, having

given the perimeter, and the radius of the inscribed circle.

Prob. XVI.— To determine a triangle, having given the

base, the perpendicular, and the ratio of the two sides.

Prob. XVII.— To determine a right-angled triangle, having

given the hypotenuse, and the side of the inscribed square.
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Prob. XV III.— To determine the radii of three equal cir-

cles inscribed in a given circle, and tangent to each other, and

also to the circumference of the given circle.

Prob. XIX.—In a right-angled triangle, having given the

perimeter, or sum of all the sides, and the perpendicular let

fall from the right angle on the hypotenuse, to determine the

triangle ; that is, its sides.

Prob. XX.—To determine a right-angled triangle, having

given the hypotenuse, and the difference of two lines drawn

from the two acute angles to the center of the inscribed circle.

Prob. XXI.— To determine a triangle, having given the

base, the perpendicular, and the difference of the two other

fades.

Prob. XXII.— To determine a triangle, having given the

base, the perpendicular, and the rectangle, or product of the

two sides.

Prob. XXIII.—To determine a triangle, having given the

lengths of three lines drawnfrom the three angles to the mid-

dle of the opposite sides.

Prob. XXTV.— In a triangle, having given all the three

Bides, to find the radius of the inscribed circle.

Prob. XXV.—To determine a right-angled triangle, having

given the side of the inscribed square, and the radius of the

inscribed circle.

Prob. XXVI.— To determine a triangle, and the radius

of the inscribed circle, having given the lengths of three lines

drawn from the three angles to the center of that circle.

Prob. XXVTI.— To determine a right -angled triangle,

having given the hypotenuse, and the radius of the inscribed

tircle.

Prob. XXVJLLL.—The lengths of two parallel chords on the

tame side of the center being given, and their distance apart,

to determine the radius of the circle.

Prob, XXIX. — The lengths of two chords in the same
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circle being given, and also the difference of their distance

from the center, to find the radius of the circle.

Prob. XXX.— The radius of a circle being given, and also

the rectangle of the segments of a chord, to determine the dis-

tance of the point at which the chord is divided, from the

center.

Prob. XXXI.—If each of the two equal sides of an isos-

celes triangle be represented by a, and the base by 2b, what

will be the value of the radius of the inscribed circle ?

A j, b^a*— b*
Ans. R = -— .

a + b

Prob. XXXII.— From a point without a circle whose

diameter is d, a line equal to d is drawn, terminating in the

concave arc, and this line is bisected at the first point in which

it meets the circumference. What is the distance of the point

without from the center of the circle ?

It is not deemed necessary to multiply problems in the

application of algebra to geometry. The preceding will

be a sufficient exercise to give the student a clear con-

ception of the nature of such problems, and will serve as

a guide for the solution of others that may be proposed

to him, or that may be invented by his own ingenuity.

MISCELLANEOUS PROPOSITIONS.

We shall conclude this book, and the subject of Geom-

etry, by offering the following propositions,
— some the-

orems, others problems, and some a combination of both,
—not only for the purpose of impressing, by application,

the geometrical principles which have now been estab-

lished, but for the not less important purpose of culti-

vating the power of independent investigation.

After one or two propositions in which the beginner
will be assisted in the analysis and construction, we shall

leave him to his own resources, with the caution that a
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patient consideration of all the conditions in each case,

and not mere trial operation, is the only process by which

he can hope to reach the desired result.

1. From two given points, to draw two equal straight

lines, which shall meet in the same point in a given

straight line.

Let A and B be the given points,

and CD the given straight line. Pro-

duce the perpendicular to the straight

line AB at its middle point, until it

meets CD in G. It is then easily

proved that G is the point in CD in

which the equal lines from A and

B must meet. That is, that AG
= BG.

If the points A and B were on

opposite sides of CD, the directions

for the construction would be the

same, and we should have this fig-

ure; but the reasoning by which

we prove AG = BG would be un-

changed.

2. From two given points on the same side of a given

straight line, to draw two straight lines which shall meet

in the given line, and make equal angles with it.

Let CD be the given line, and

A and B the given points.

From B drawBE perpendicular

to CD, and produce the perpen-

dicular to F, making EF equal to

BE) then draw AF, and from the

point G, in which it intersects

CD, draw GB. Now, [__BGE=>

\_EGF =\_AGC. Hence, the

angles BGD and A GC are equal,

and the lines AG and BG meet

in a common point in the line CD, and made equal angles witk

that line.
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3. If, from a point without a circle, two straight lines

be drawn to the concave part of the circumference, making

equal angles with the line joining the same point and the

center, the parts of these lines which are intercepted within

the circle, are equal.

4. If a circle be described on the radius of another circle,

any straight line drawn from the point where they meet,

to the outer circumference, is bisected by the interior one.

5. From two given points on the same side of a line

given in position, to draw two straight lines which shall

contain a given angle, and be terminated in that line.

6. If, from any point without a circle, lines be drawn

touching the circle, the angle contained by the tangents is

double the angle contained by the line joining the points

of contact and the diameter drawn through one of them.

7. If, from any two points in the circumference of a

circle, there be drawn two straight lines to a point in a

tangent to that circle, they will make the greatest angle

when drawn to the point of contact.

8. From a given point within a giv^n circle, to draw a

straight line which shall make, with the circumference,

an angle, less than any angle made by any other line

drawn from that point.

9. If two circles cut each other, the greatest line that

can be drawn through either point of intersection, is that

which is parallel to the line joining their centers.

10. If, from any point within an equilateral triangle,

perpendiculars be drawn to the sides, their sum is equal

to a perpendicular drawn from any of the angles to the

opposite side.

11. If the points of bisection of the sides of a given tri-

angle be joined, the triangle so formed will be one fourth

of the given triangle.

12. The difference of the angles at the base of any tri-

angle, is double the angle contained by a line drawn from

the vertex perpendicular to the base, and another bisect-

ing the angle at the vertex.
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13. If, from the three angles of a triangle, lines be

*rawn to the points of bisection of the opposite sides,

tfiese lines intersect each other in the same point.

14. The three straight lines which bisect the three

! angles of a triangle, meet in the same point.

15. The two triangles, formed by drawing straight

lines from any point within a parallelogram to the ex-

tremities of two opposite sides, are, together, one half the

parallelogram.
16. The figure formed by joining the points of bisection

of the sides of a trapezium, is a parallelogram.

17. If squares be described on three sides of a right-

angled triangle, and the extremities of the adjacent sides

be joined, the triangles so formed are equivalent to the

given triangle, and to each other.

18. If squares be described on the hypotenuse and sides

of a right-angled triangle, and the extremities of the sides

of the former, and the adjacent sides of the others, be

joined, the sum of the squares of the lines joining them

will be equal to five times the square of the hypotenuse.
19. The vertical angle of an oblique-angled triangle

inscribed in a circle, is greater or less than a right angle,

by the angle contained between the base and the diam-

eter drawn from the extremity of.the base.

20. If the base of any triangle be bisected by the diam-

eter of its circumscribing circle, and, from the extremity
of that diameter, a perpendicular be let fall upon the

longer side, it will divide that side into segments, one of

which will be. equal to one half the sum, and the other to

one half the difference, of the sides.

21. A straight line drawn from the vertex of an equi-

lateral triangle inscribed in a circle, to any point in the

opposite circumference, is equal to the sum ofthe two lines

which are drawn from the extremities of the base to the

same point.

22. The straight line bisecting any angle of a triangle
21 Q
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inscribed in a given circle, cuts the circumference in a

point which is equi-distant from the extremities of the

side opposite to the bisected angle, and from the center

of a circle inscribed in the triangle.

23. If, from the center of a circle, a line be drawn to

any point in the chord of an arc, the square of that line,

together with the rectangle contained by the segments
of the chord, will be equal to the square described on the

radius.

24. If two points be taken in the diameter of a circle,

equidistant from the center, the sum of the squares of the

two lines drawn from these points to any point in the cir-

cumference, will be always the same.

25. If, on the diameter of a semicircle, two equal circles

be described, and in the space included by the three cir-

cumferences, a circle be inscribed, its diameter will be %

the diameter of either of the equal circles.

26. If a perpendicular be drawn from the vertical angle
of any triangle to the base, the difference of the squares
of the sides is equal to the difference of the squares of

the segments of the base.

27. The square described on the side of an equilateral

triangle, is equal to three times the square of the radius

of the circumscribing circle.

28. The sum of the sides of an isosceles triangle is less

than the sum of the sides of any other triangie on the same

base and between the same parallels.

29. In any triangle, given one angle, a side adjacent to

the given angle, and the difference of the other two sides,

to construct the triangle.

30. In any triangle, given the base, the sum of the

other two sides, and the angle opposite the base, to con-

struct the triangle.

31. In any triangle, given the base, the angle opposite

io the base, and the difference of the other two sides, to

instruct the triangle.
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BOOK IX.

SPHERICAL GEOMETRY.

DEFINITIONS.

1. Spherical Geometry has for its object the investiga-
tion of the properties, and of the relations to each other,

of the portions of the surface of a sphere which are

bounded by the arcs of its great circles.

2. A Spherical Polygon is a portion of the surface of a

sphere bounded by three or more arcs ofgreat circles, called

the sides of the polygon.
3. The Angles of a spherical polygon are the angles

formed by the bounding arcs, and are the same as the

angles formed by the planes of these arcs.

4. A Spherical Triangle is a spherical polygon having
but three sides, each of which is less than a semi-circum-

ference.

5. A Lime is a portion of the surface of a sphere in-

cluded between two great semi-circumferences having a

common diameter.

6. A Spherical Wedge, or TTngula, is a portion of the

Bolid sphere included between two great semi-circles having
a common diameter
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7. A Spherical Pyramid is a portion of a sphere bounded

by the faces of a solid angle having its vertex at the

center, and the spherical polygon which these faces inter-

cept on the surface. This spherical polygon is called the

base of the pyramid.

8. The Axis of a great circle of a sphere is that diameter

of the sphere which is perpendicular to the plane of the

circle. This diameter is also the axis of all small circles

parallel to the great circle.

9. A Pole of a circle of a sphere is a point on the sur-

face of the sphere equally distant from every point in the

circumference of the circle.

10. Supplemental, or Polar Triangles, are two triangles on

a sphere, so related that the vertices of the angles of

either triangle are the poles of the sides of the other.

PKOPOSITION I.

Any two sides of a spherical triangle are together greater

than the third side.

Let AB, AC, and BC, be the three

sides of the triangle, and D the center

of the sphere.
The angles of the planes that form

the solid angle at D, are measured by
the arcs AB, AG, snidBC. But any
two of these angles are together greater
than the third angle, (Th. 18, B. VI). Therefore, any two

sides ofthe triangle are, together, greater than
* ue third side.

Hence the proposition.

PROPOSITION II.

The sum of the three sides of any spherical triangle is less

than the circumference of a great circle.

Let ABC be a spherical triangle ; the two sides, AB
and AC, produced, will meet at the point which is diame-

trically opposite to A
f
and the arcs, ABB and ACB are
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together equal to a great circle. But,

by the last proposition, BC is less

than the two arcs,BD andDC There-

fore, AB + BO + AC, is less than

ABD + ACD; that is, less than a

great circle.

Hence the proposition.

PROPOSITION III.

The extremities of the axis of a great circle of a sphere

are the poles of the great circle, and these points are also

the poles of all small circles parallel to the great circle.

Let be the center of

the sphere, and BD the

axis of the great circle,

Cm Am" ;
then willB and

D, the extremities of the

axis, be the poles of the

circle, and also the poles

of any parallel small cir-

cle, as FnE.

For, since BD is per-

pendicular to the plane
of the circle, Cm Am", it

is perpendicular to the lines OA, 0m', Om", etc., passing

through its foot in the plane, (Def. 2, B. VI); hence, all

the arcs, Bm, Bm', etc., are quadrants, as are also the

arcs Dm, Dm', etc. The points B and D are, therefore,

each equally distant from all the points in the circumfer-

ence, Cm Am"
; hence, (Def. 9), they are its poles.

Again, since the radius, OB, is perpendicular to the

plane of the circle, Cm Am", it is also perpendicular to

the plane of the parallel small circle, FnE, and passes

through its center, 0'. Now, the chords of the arcs, BF,
Bn, BE, etc., being obiique lines, meeting the plane of

the small circle a4-

oqual distances from the foot of the
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perpendicular, BO', are all equal, (Th. 4, B. VI); hence,
the arcs themselves are equal, and B is one pole of the

circle, FnE. In like manner we prove the arcs, BF, Dn,
BE, etc., equal, and therefore D is the other pole of the

same circle.

Hence the proposition, etc.

Cor. 1. A point on the surface of a sphere at the distance

of a quadrantfrom two points in the arc of a great circle, not

at the extremities of a diameter, is a pole of that arc.

For, if the arcs, Bm, Bmr

,
are each quadrants, the angles,

BOm and BOmf

,
are each right angles; and hence, BO

is perpendicular to the plane of the lines, Om and 0m f

,

which is the plane of the arc, mm'; B is therefore the

pole of this arc.

Cor. 2. The angle included between the arc of a great circle

and the arc of another great circle, connecting any of its points

with the pole, is a right angle.

For, since the radius, BO, is perpendicular to the plane
of the circle, Cm Am", every plane passed through this

radius is perpendicular to the plane of the circle
; hence,

the plane of the arc Bm is perpendicular to that of the

arc (7m; and the angle of the arcs is that of their planes.

PKOPOSITION IV.

The angle formed by two arcs of great circles which inter-

sect each other, is equal to the angle included between the tan-

gents to these arcs at their point of intersection, and is meas-

ured by that arc of a great circle whose pole is the vertex of

the angle, and which is limited by the sides of the angle or

the sides produced.

Let AM and AN be two arcs intersecting at the

point A, and let AE and AF be the tangents to these

arcs at this point. Take AC and AD, each quadrants,

and draw the arc CD, of which A is the pole, and OQ
and OB are the radii.
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Now, since the planes of the arcs intersect in the radius

OA, and AE is a tangent to one arc, and AF a tangent
to the other, at the common point 'A, A
these tangents form with each other an

angle which is the measure of the angle
of the planes of the arcs ; but the angle
of the planes of the arcs is taken as the

angle included by the arcs, (Def. 3).

Again, because the arcs, AQ and AD,
are each quadrants, the angles, A 00,

AOD, are right angles ;
hence the radii,

OC and OD, which lie, one in one face,

and the other in the other face, of the

diedral angle formed by the planes of the arcs, are

perpendicular to the common intersection of these faces

at the same point. The angle, OOD, is therefore the

angle of the planes, and consequently the angle of the

arcs ;
but the angle OOD is measured by the arc OD.

Hence the proposition.

Oor. 1. Since the angles included between the arcs of

great circles on a sphere, are measured by other arcs of

great circles of the same sphere, we may compare such

angles with each other, and construct angles equal to

other angles, by processes which do not differ in principle

from those by which plane angles are compared and con-

structed.

Oor. 2. Two arcs of great circles will form, by their in-

tersection, four angles, the opposite or vertical ones of

which will be equal, as in the case of the angles formed

by the intersection of straight lines, (Th. 4, B. I).

PROPOSITION V.

The surface of a hemisphere may be divided into three right-

angled andfour quadrantal triangles, and one of these right-

angled triangles will be so related to the other two, that two

of its sides and one of its angles will be complemental to the
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Bides of one of them, and two of its sides supplemental to two

of the side.s of the other.

Let ABO be a right-angled spherical triangle, right

angled at B.

Produce the sides, AB and AC, and

they will meet at A', the opposite

point on the sphere. Produce BO,
both ways, 90° from the point B, to

P and P', which are, therefore, poles

to the arc AB, (Prop. 3). Through
A, P, and the center of the sphere,

pass a plane, cutting the sphere into

two equal parts, forming a great circle on the sphere,

which great circle will be represented by the circle

PAP'A' in the figure. At right angles to this plane,

pass another plane, cutting the sphere into two equal

parts ;
this great circle is represented in the figure by the

straight line, POP'. A and A' are the poles to the great

circle, POP' ;
and P and Pf are the poles to the great

circle, ABA f
.

!N"ow, OPB is a spherical triangle, right-angled at B,
and its sides OP and OB are complemental respectively

to the sides BO and A of the A ABO, and its side PD
is complemental to the arc DO, which measures the

[_BAO of the same triangle. Again, the A A'BO is right-

angled at B, and its sides A'O, A'B, are supplemental

respectively to the sides AO, AB, of the AABO. There-

fore, the three right-angled A's, ABO, OPB, and A'BO,
have the required relations. In the A AOP, the side AP
is a quadrant, and for this reason the A is called a quad-
rantal triangle. So also, are the A's A' OP, AOP', and

P'OA', quadrantal triangles. Hence the proposition.

Scholium.—In every triangle there are six elements, three sides and

three angles, called the parts of the triangle.

Now, if ail the parts of the triangle ABC are known, the parts of

each of the A's
>
PCD and A'BC, are as completely known. And

when the parts of the A PCD are known, the parts of the A '

8 A C2
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and A'CP are also known
; for, the side PD measures each of the

|
's

P^lCand PA'C, and the angle CPD, added* to the right angle A'PDt

gives the
|
A'PC, and the

|
CPA is supplemental to this. Hence,

the solution of the A ABC is a solution of the two right-angled and

four quadrantal A's? which together with it make up the surface of

the hemisphere.

PROPOSITION VI.

If there be three arcs of great circles whose poles are the

angular points of a spherical triangle, such arcs, ifproduced,

will form another triangle, whose sides will be supplemental

to the angles of the first triangle, and the sides of the first

triangle will be supplemental to the angles of the second.

Let the arcs of the three great cir-

cles be GH, PQ, KL, whose poles are

respectively A, B, and 0. Produce the

three arcs until they meet in D, E, and

F. We are now to prove that E is the

pole of the arc AO; D the pole of the

arc BO; F the pole to the arc AB.

Also, that the side EF, is supplemental
to the angle A; EB to the angle 0;

and BF to the angle B; and also, that the side A is

supplemental to the angle E, etc.

A pole is 90° from any point in the circumference of

Us great circle ; and, therefore, as A is the pole of the

arc Gff, the point A is 90° from the point E. As is

the pole of the arc LK, is 90° from any point in

that arc
; therefore, is 90° from the point E ; and

E being fcO° from both A and 0, it is the pole of the arc

AC. In the same manner, we may prove that B is the

pole of BO, and F the pole of AB.
Because A is the pole of the arc Git, the arc GH

measures the angle A, (Prop. 4); for a similar reason,

PQ measures the angle B, and LK measures the angle 0,

Because E is the pole of the arc AO, EH= 90°

Or, EG +GH= 90°

For a like reason, FH + GH = 90°
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Adding these two equations, and observing that QJf
= A, and afterward transposing one A, we have,

EG + GIT + FIT = 180° — A.

Or, UF=1S0°— A
}

In like manner, jF2> = 180° — B
\

(«)

And, BE = 180° — J

But the arc (180°
—

A), is a supplemental arc to A, by
the definition of arcs; therefore, the three sides of the

triangle BEF, are supplements of the angles A, By C, of

the triangle ABO.

Again, as E is the pole of the arc A C, the whole angle
E is measured by the whole arc LH.

But, AC + CE= 90°

Also, AQ + AL = 90°

By addition, AQ+AC+QH + AL = 180°

By transposition, ^(7+ (7^+^^= 180° —J.O
That is, £#, or E= 180°— ^L<7 }
In the same manner, F = 180°—^ > (&)

And, i)=180°— J5(7 J

That is, the sides of the first triangle are supplemental
to the angles of the second triangle.

PROPOSITION Til.

The sum of the three angles of any spherical triangle, is

greater than two right angles, and less than six right angles.

Add equations («), of the last proposition. The first

member of the equation so formed will be the sum of

the three sides of a spherical triangle, which sum we

may designate by S. The second member will be 6 right

angles (there being 2 right angles in each 180°) less the

three angles A, B, and O.

That is, S = 6 right angles
—

(A + B + C)

By Prop. 2, the sum S is less than 4 right angles;
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therefore, to it add s, a sufficient quantity to make 4

right angles. Then,

4 right angles
= 6 right angles

— (A + B -f C) -f *

Drop or cancel 4 right angles from both members, and

transpose (A + B + O).

Then, A + B + = 2 right angles + a.

That is, the three angles of a spherical triangle make

a greater sum than two right angles by the indefinite

quantity *, which quantity is called the spherical excess,

and is greater or less according to the size of the triangle.

Again, the sum of the angles is less than 6 right angles.

There are but three angles in any triangle, and each one of

them must be less than 180°, or 2 right angles. For, an

angle is the inclination of two lines or two planes ;
and

when two planes incline by 180°, the planes are parallel,

or are in one and the same plane ; therefore, as neither

angle can be equal to 2 right angles, the three can never

be equal to 6 right angles.

PROPOSITION VIII.

On the same sphere, or on equal spheres, triangles which

are mutually equilateral are also mutually equiangular ; and,

conversely, triangles which are mutually equiangular are also

mutually equilateral, equal sides lying opposite equal angles.

First—-LetABO and DEF, in

which AB = BE, AO= DF, and

BO = EF, be two triangles on

the sphere whose center is 0;
then will the [_ A, opposite the

side BO, in the first triangle, be

equal the [_D, opposite the equal
side EF, in the second; also

L# = l E, andl_<?=t F.
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For, drawing the radii to the vertices of the angles of

these triangles, we may conceive to he the common
vertex of two triedral angles, one of which is hounded

by the plane angles A OB, BOO, and A 00, and the other

by the plane angles DOE, EOF, and J)OF. But the

plane angles bounding the one of these triedral angles,

are. equal to the plane angles bounding the other, each

to each, since they are measured by the equal sides of the

two triangles. The planes of the equal arcs in the two

triangles are therefore equally inclined to each other,

(Th. 20, B. VI) ;
but the angles included between the

planes of the arcs are equal to the angles formed by the

arcs, (Def. -3).

Hence the [_ A, opposite the side BO, in the A ABU,
is equal to the [_ -A opposite the equal side EF, in the

other triangle ;
and for a similar reason, the [__B= l_E,

and the l_0=l_F.
Second.—If, in the triangles ABO and DEF, being on

the same sphere whose center is 0, the [_A = [_D, the

\_B = [_E, and the L<7« L^7

;
tnen will the side AB,

opposite the [__ 0, in the first, be equal to the side BE,
opposite the equal [__F, in the second; and also the side

A equal to the side BF, and the side BO equal to the

side EF.

For, conceive two triangles, denoted by A'B'O f and

D'E'F', supplemental to ABO and BEF, to be formed;
then will these supplemental triangles be mutually equi-

lateral, for their sides are measured by 180° less the

o] posite and equal angles of the triangles ABO and

DEF, (Prop. 6) ;
and being mutually equilateral, they

are, as proved above, mutually equiangular. But the

triangles ABO and DEF are supplemental to the tri-

angles A'B'O' and D'E'F 1

'; and their sides are therefore

measured severally by 180° less the opposite and equal

angles of the triangles A'B'O' and D'E'2", (Prop. 6),
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Hence the triangles ABO and DEF, which are mutually

equiangular, are also mutually equilateral.

Scholium.—With the three arcs of great circles, AB, AC, and BCt

either of the two triangles, ABC, DEF, may be formed ; but it is evi-

dent that these two triangles cannot be made to coincide, though they

are both mutually equilateral and mutually equiangular. Spherical

triangles on the same sphere, or on equal spheres, in which the sides

and angles of the one are equal to the sides and angles of the other,

each to each, but are not themselves capable of superposition, are

called symmetrical triangles.

PROPOSITION IX.

On the same sphere, or on equal spheres, triangles having

two sides of the one equal to two sides of the other, each to

each, and the included angles equal, have their remainmg
sides and angles equal.

Let ABO and DEF be two

triangles, in which AB — DE,
AO = DF, and the angle A =
the angle D ;

then will the side

BO be equal to the side FE,
the L B = the [__E, and |_ G

For, if DE lies on the same

side of DjFthat AB does of AO, the two triangles, ABC
and DEF, may be applied the one to the other, and they

may be proved to coincide, as in the case of plane tri-

angles. But, if DE does not lie on the same side of DF
that AB does of AO, we may construct the triangle which

is symmetrical with DEF; and this symmetrical triangle,

when applied to the triangle ABO, will exactly coincide

with it. But the triangle DEF, and the triangle sym-
metrical with it, are not only mutually equilateral, but

also are mutually equiangular, the equal angles lying

opposite the equal sides, (Prop. 8) ;
and as the one or the

other will coincide with the triangle ABO, it follows that
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the triangles, ABO and DBF, are either absolutely or

symmetrically equal.

Oor. On the same sphere, or on equal spheres, triangles

having two angles of the one equal to two angles of the other,

each to each, and the included sides equal, have their remain-

ing sides and angles equal.

For, if \__A = LA L-# - L-^i and side ^B - side

DE, the triangle DBF, or the triangle symmetrical with

it, will exactly coincide with A ABO, when applied to it

as in the case of plane triangles ; hence, the sides and

angles of the one will be equal to the sides and angles
of the other, each to each.

PKOPOSITION X.

In an isosceles spherical triangle, the angles opposite the

equal sides are equal.
A

Let ABO be an isosceles spherical tri-

angle, in which AB and A are the equal

sides ; then will [__B = [__(?.

For, connect the vertex A with D, the /

middle point of the base, by the arc of a /

great circle, thus forming the two mutu-
*f—~-

ally equilateral triangles, ABB and ADO.

They are mutually equilateral, because AD is common,
BD=DO by construction, and AB=AO by supposition;
hence they are mutually equiangular, the equal angles

being opposite the equal sides, (Prop. 8). The angles B
and 0, being opposite the common side AD, are there-

fore equal. *

Oor. The arc of a great circle which joins the vertex

of an isosceles spherical triangle with the middle point of

the base, is perpendicular to the base, and bisects the ver-

tical angle of the triangle ; and, conversely, the arc of a
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great circle which bisects the vertical angle of an isosceles

spherical triangle, is perpendicular to, and bisects the

base.

PROPOSITION XI.

If two angles of a spherical triangle are equal, the opposite

sides are also equal, and the triangle is isosceles.

' In the spherical triangle, ABO, let the [_B — [_0; then

will the sides, AB and A 0, opposite these equal angles,

be equal.

For, let P be the pole of the base, BO,
and draw the arcs of great circles, PB,
PO; these arcs will be quadrants, and at

right angles to BO, (Cor. 2, Prop. 3).

Also, produce OA and BA to meet PB
and PO, in the points E and F. Wow,
the angles, PBF and POE, are equal,

because the first is equal to 90° less the

[__ABO, and the second is equal to 90°

less the equal \__AOB; hence, the A's,

PBFan&POE, are equal in all their parts,

since they have the [_P common, the [_PBF= \__POE,
and the side PB equal to the side PO, (Cor., Prop. 9).

PE is therefore equal to PF, and [_PEO= \__PFB.
1

Taking the equals PF and PE, from the equals PO
and PB, we have the remainders, FO and EB, equal ;

and, from 180°, taking the [_'s PFB and PEO, we have

the remaining [__'s, AFO and AEB, equal. Hence, the

A's, AFO and AEB, have two angles of the one equal to

two angles of the other, each to each, and the included

sides equal; the remaining sides and angles are therefore

equal, (Cor., Prop. 9). Therefore, A is equal to BA,
and the A ABO is isosceles.

Cor. An equiangular spherical triangle is also equilat-

eral, and the converse.
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Behare.— In this demonstration, the pole of the base, BC, is sup-

posed to fall without the triangle, ABC. The same figure may be used

for the case in which the pole falls within the triangle ; the modifi-

cation the demonstration then requires is so slight and obvious, that

it would be superfluous to suggest it.

PROPOSITION XII.

The greater of two sides of a spherical triangle is opposite

the greater angle ; and, conversely, the greater of two angles

of a spherical triangle is opposite the greater side.

Let ABC be a spherical triangle, in which the angle A
is greater than the angle B ;

then is the side BO greater

than the side A C.

Through A draw the arc of a

great circle, AD, making, withAB,
the angle BAI) equal to the angle
ABB. The triangle, BAB, is isos-

celes, and DA = DB, (Prop. 11).

In the a ACD, CD+AD>AC,
(Prop. 1.); or, substituting for AD its equal DB, we have,

CD + DB> AC.

If in the above inequality we now substitute CB for

CD-\-DB, it becomes CB > CA.

Conversely ;
if the side CB be greater than the side CA,

then is the \_A > th« [__i?. For, if the [_A is not greater

than the [_B, it is either equal to it, or less than it. The

[__A is not equal to the [_B ;
for if it were, the triangle

would be isosceles, and CB would be equal to CA, which

is contrary to the hypothesis. The [_A is not less than

the [_B; for if it were, the side CB would be less than the

side CA, by the first part of the proposition, which is also

contrary to the hypothesis ; hence, the [_A must be greater

than the L^-
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PROPOSITION XIII.

Two symmetrical spherical triangles are equal in area

Let ABO and BEF be two A's on the same sphere,

having the sides and angles of the one equal to the sides

and angles of the other, each to

each, the triangles themselves

not admitting of superposition.

It is to be proved that these

A's have equal areas.

Let P be the pole of a small

circle passing through the three

points, ABO, and connect P
with each of the points, A, B,
and 0, by arcs of great circles. Next, through E draw

the arc of a great circle, EP', making the angle DEP'

equal to the angle ABP. Take EP' = BP, and draw

the arcs of great circles, P'B, P'F.

The A's, ABP and BEP', are equal in all their parts,

because AB=BE, BP=EP', and the \__ABP=[_BEP',
(Prop. 9). Taking from the \__ABO the \__ABP, and

from the \__DEF the \_BEP' ,
we have the remaining

angles, PBO and P'EF, equal; and therefore the A's,

BOP and EFP 1

,
are also equal in all their parts.

Now, since the a's, ABP and DEP', are isosceles, they
will coincide when applied, as will also the A's, BOP
and EFP 1

,
for the same reason. The polygonal areas,

ABQP and BEFP 1

,
are therefore equivalent. If from

the first we take the isosceles triangle, PAO, and from the

second the equal isosceles triangle, P'BF, the remainders,

or the triangle* ABO and BEF, will be equivalent.

Remark.— It is assumed in this demonstration that the pole P falls

without the triangle. Were it to fall within, instead of without, no

other change in the above process would be required than to add the

isosceles triangles, PAC, P/DF, to the polygonal areas, to get the

areas of the triangles, ABC, DEF.
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Cor. Two spherical triangles on the same sphere, or on

equal spheres, will be equivalent— 1st, when they are

mutually equilateral;
—

2d, when they are mutually equi-

angular ;
—

3d, when two sides of the one are equal to

two sideb of the other, each to each, and the included

angles are equal ;
—

4th, when two angles of the one are

equal to two angles of the other, each to each, and the

included aides are equal.

PKOPOSITION XIV.

If two arcs of great circles intersect each otlier on the sur-

face of a hemisphere, the sum of either two of the opposite tri-

angles thus formed will he equivalent to a lune whose angle is

the corresponding angle formed by the arcs.

Let the great circle, AEBC, be the base of a hemi-

sphere, on the surface of which the great semi-circumfer-

ences, BBA and CBE, inter-

sect each other at B
;
then will

the sum of the opposite tri-

angles, BBC and BAB, be

equivalent to the lune whose

angle is BBC; and the sum
of the opposite triangles,

CBA and BBJE, will be equiv-
alent to the lune whose angle
is CBA.
Produce the arcs,BBA and

CBE, until they intersecton the opposite hemisphere at H\
then, since CBE and BEE are both semi-circumferences

of a great circle, they are equal*. Taking from each the

common part BE, we have CB = HE. In the same way
we prove BB = HA, and AE= BC. The two triangles,

BBC and HAE, are therefore mutually equilateral, and

hence they are equivalent, (Prop. 13). But the two tri-

angles, BAE and ABEf together, make up the lune
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BEHAB\ hence the sum of the a's, BBO and ABE, is

equivalent to the same lune.

By the same course of reasoning, we prove that the

sum of the opposite A's, BAQ and BBE, is equivalent

to the lune BOHAB, whose angle is ABO.

PROPOSITION XV.

The surface of a lune is to the whole surface of the sphere,

as the angle of the lune is to four right angles ; or, as the arc

which measures that angle is to the circumference of a great

circle.

I^ztABFCA be a lune on the

surface of a sphere, and BCE
an arc of a great circle, whose

poles are A and F, the vertices

of the angles of the lune. The

arc, BO, will then measure the

angles of the lune. Take any
arc, as BB, that will be con-

tained an exact number of times

in BO, and in the whole circum-

ference, BOEB, and, beginning at B, divide the arc and

the circumference into parts equal to BB, and join the

points of division and the poles, by arcs of great circles.

We shall thus divide the whole surface of the sphere
into a number of equal lunes. Now, if the arc BO con-

tains the arc BB m times, and the whole circumference

contains this arc n times, the surface of the lune will

oontain m of these partial lunes, and the surface of the

sphere will contain n of the same
;
and we shall have,

Surf, lune : surf, sphere : : m : n.

But, m : n :: BO : circumference great circle
;

hence, surf, lune : surf sphere : : BO : cir. great circle;

or, surf, lune : surf, sphere :: [_BOO : 4 right angles.
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This demonstration assumes that BD is a common
measure of the arc, BC, and the whole circumference. It

may happen that no finite common measure can be

found ; but our reasoning would remain the same, even

though this common measure were to become indefinitely
small.

Hence the proposition.

Cor. 1. Any two lunes on the same sphere, or on equal

spheres, are to each other as their respective angles.

Scholium.— Spherical triangles, formed by joining the pole of an

arc of a great circle with the extremities of this arc by the arcs of

great circles, are isosceles, and contain two right angles. For this

reason they are called bi-rectangular. If the base is also a quadrant,
the vertex of either angle becomes the pole of the opposite side, and

each angle is measured by its opposite side. The three angles are then

right angles, and the triangle is for this reason called tri-rectangular.

It is evident that the surface of a sphere contains eight of its tri-

rectangular triangles.

Cor. 2. Taking the right angle as the unit of angles,
and denoting the angle of a lune by A, and the surface

of a tri-rectangular triangle by T, we have,

surf, of lune : 8^ :: A : 4;

whence, surf, of lune = 2A X T.

Cor. 3. A spherical ungula bears the same relation to

the entire sphere, that the lune, which is the base of the

ungula, bears to the surface of the sphere ;
and hence,

any two spherical ungulas in the same sphere, or in

equal spheres, are to each other as the angles of their re-

spective lunes.

PKOPOSITION XVI.

The area cf a spherical triangle is measured by the excess

of the sum of its angles over two right angles, multiplied by
the tri-rectangular triangle.

Let ABC be a spherical triangle, and DJEFLK the cir-

cumference of the base of the hemisphere on which this

triangle is situated.
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Produce the sides of the tri-

angle until they meet this cir-

cumference in the points, D, U,

F, L, K, and P, thus forming
the sets of opposite triangles,

DAE,AKL ; BEF, BPK; CFL,
CDP.

Now, the triangles of each of

these sets are together equal to

a lune, whose angle is the cor-

responding angle of the triangle, (Prop. 14) ;
hence we

have,

ADAE + AAKL = 2A x T% (Prop. 15, Cor. 2).

ABEF + ABPK = 2B x T.

A CFL + A CDP = 2(7 x T.

If the first members of these equations be added, it is

evident that their sum will exceed the surface of the

hemisphere by twice the triangle ABC; hence, adding
these equations member to member, and substituting for

the first member of the result its value, 4T + 2AABC,
we have

4I7 + 2aABC = 2A.T + 2B.T+ 2CT

or, 2T+ AABC=> A.T + B.T + C.T

whence, AABC = A.T + B.T + C.T—2T.

That is, AABC - (A + B + C— 2) T.

But A + B + C— 2 is the excess of the sum of the

angles of the triangle over two right angles, and T de-

notes the area of a tri-rectangular triangle.

Hence the proposition ;
the area, etc.
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PROPOSITION XVII.

77ie area of any spherical polygon is measured by the excess

of the sum of all its angles over two right angles, taken as

many times, less two, as the polygon has sides, multiplied by

the tri-rectangular triangle.

LetABCDE be a spherical poly- ^-—"7
gon; then will its area be meas- b^"^ /
ured by the excess of the sum of /\ // \ /

the angles, A, B, 0, D, and E, over /

two right angles taken a number / \
of times which is two less than J -~J*Je

the number of sides, multiplied by \ /
T, the tri-rectangular triangle. \. /
Through the vertex of any of the p

angles, as E, and the vertices of

the opposite angles, pass arcs of great circles, thus divi-

ding the polygon into as many triangles, less two, as the

polygon has sides. The sum of the angles of the several

triangles will be equal to the sum of the angles of the

polygon.

Now, the area of each triangle is measured by the

excess of the sum of its angles over two right angles,

multiplied by the tri-rectangular triangle. Hence the

sum of the areas of all the triangles, or the area of the

polygon, is measured by the excess of the sum of all the

angles of the triangles over two right angles, taken as

many times as there are triangles, multiplied by the tri-

rectangular triangle. But there are as many triangles as

the polygon has sides, less two.

Hence the proposition ;
the area of any spherical voly-

gon, etc.

Cor. If S denote the sum of the angles of any spherical

polygon, n the number of sides, and T the tri-rectan-

gular triangle, the right angle being the unit of angles ;

the area of the polygon will be expressed by

[£_ 2 (n
—

2)] x T= (#— 2n + 4) T.
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